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A classification is given for the multiplicity free indecomposable representations of the simple Lie algebra
su(1,1), which are unbounded on both sides. Formulas have been obtained for the matrix elements of the
generators of su(l,1) for all these representations. Representations of su(1,1) are analyzed which have the
property that all their weight subspaces are infinite dimensional. Subrepresentations and representations
on quotient spaces of this infinite multiplicity representations are considered and their relationship to the
multiplicity free indecomposable representations is determined (both, unbounded on both sides, and
bounded on one side). Finite multiplicity indecomposable representations are obtained from the infinite
multiplicity representation for special values of the Casimir operator. A decomposition of the infinite
multiplicity representation into a direct sum of multiplicity free representations and finite multiplicity
indecomposable respresentations is given in two different ways. Finally, formulas for the matrix elements

of su(1,1) are given for the finite multiplicity indecomposable representations.

I. INTRODUCTION

Indecomposable representations of (semi)simple Lie
algebras have recently found their way into physics,
and their application has attracted considerable atten-
tion. Armstrong, in 1971, investigated properties of
radial matrix elements and introduced a tensor opera-
tor that turned out to transform like an infinite-dimen-
sional indecomposable representation of su(1,1).?
Crubellier in his analysis of two-body radial matrix
elements generalized Armstrong’s results.? In 1976
Chaton, Levi, and Moshinsky gave a full interpretation
of the results obtained by Armstrong and Crubellier,?
Other applications of indecomposable representations
of semisimple (as well as non-semisimple) Lie algebras
have been suggested by Barut in 1973 as a possibility
for describing composite particles with internal degrees
of freedom.*?

It appears thus that a classification and an analysis
of the properties of indecomposable representations of
the simple Lie algebra su(1, 1) (4,) might be of value.
The algebra su(l, 1) is chosen since it provides the sim-
plest case, and, moreover, figures so far prominently
in applications of indecomp~3able representations of
(simple) Lie algebras in physics.

Results on the classification of multiplicity free (the
weight subspaces have dimension one) indecomposable
representations of the algebra su(1, 1) have been ob-
tained by Gel'fand, Graev, and Vilenkin.® This classi-
fication has been completed by Phillips in his thesis,
but has remained unpublished. ®

In this article we will give the classification of all
infinite-dimensional multiplicity free indecomposable
representations of the algebra su(1, 1), which are un-
bounded on both sides (for a classification of the infinite-
dimensional multiplicity free indecomposable represen-
tations that are bounded on the side, see, for example,
Ref. 7). The classification given here has been carried
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out independently, and is achieved by methods which
differ from those of other authors who have also in-
vestigated indecomposable representations of su(1, 1),
The classification is given in Sec. II of this article.

Apart from the classification of the (multiplicity-
free) indecomposable representations of su(l, 1), for-
mulas are obtained for the matrix elements of the gen-
erators of su(l, 1) in these representations. They are
also given in Sec. II of this article.

In Sec. III, a representation of su(1, 1) is analyzed,
which has the property that all its weight subspaces are
infinite dimensional. To our knowledge, no such analy-
sis has been carried out before, and ours is not com-
plete. Some of the subrepresentations of this infinite
multiplicity representation, as well as representations
induced on its quotient spaces, are shown to be equivalent
to multiplicity free (infinite-dimensional) representations
which are bounded on one side, or to the multiplicity free
representations discussed in Sec. II of this article. From
this infinite multiplicity representation finite multipli-
city indeconiposable representations are derived (the
weight subspaces have finite dimension = 1) for special
values of the Casimir operator (Sec. I1I). These rep-
resentations have unusual properties, one of which
might be described as “leakage” into an invariant sub-
space (see Fig. 11). They do also reflect properties of
irreversible processes of a more general nature than
the multiplicity free indecomposable representations of
Sec. II. A decomposition of the infinite multiplicity rep-
resentation is achieved in two diffevent ways as direct
sum of multiplicity free representations, all of which
are either bounded above or below, and finite multipli-
city indecomposable representations. An example is
given of an infinite-dimensional, multiplicity free rep-
resentation, unbounded on both sides, which is induced
by the infinite multiplicity representation on one of its
invariant subspaces. Again, as for all representations
discussed in this article, the matvix elements of the
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FIG, 1. Structure of representation =*+* for <1, [ integer,
The nonzero roots are indicated at the origin of the diagram,
The other arrows indicate the points which cannot be crossed
in that direction. Invariant subspaces which carry subrepre-
sentations are indicated. Quotient representations are graphi-
cally described by simply deleting those invariant subspaces
with respect to which the quotient space is formed, For half-
integer values of [ the structure is similar and no separate
figure is given.

generators of su(l, 1) are given for the finite multiplicity
indecomposable representation as well as for all other
representations derived from the infinite multiplicity
representation.

Il. MULTIPLICITY FREE SU (1,1) REPRESENTATIONS

The purpose of this section is to give a complete
discussion of representations of the simple Lie alge-
bra su(l, 1) which are multiplicity free, that is, of all
representations of su(l, 1) whose weight subspaces have
the dimensionality one.

The Lie products of the algebra su(l, 1) of the group
SU(1, 1) are given by the commutation relations

[hye]:e! [h;f]:—f, [eyf]:‘h' (1)
The Casimir operator (invariant) is
Cy=ef+fe—-It. (2)

A. Representations of the principal nonunitary series of
su (1,1)

Bergmann® constructed the principal unitary series
of representations of the group SU(1,1). The elements
of this group act on a Hilbert space LY(T) of square in-
tegrable functions defined on the unit circle 7' in €. The
representations are labelled by two numbers 4 and [,
where ! is pure imaginary and 2 is equal to 0 or 5. They
act in L¥(T) by means of the formula

U (g)f exp(i6) ]

_ exp(i9)§+&>2" = —m exp(i9)a+3)
—(lexp(iG)BJrEl | exp(i6)3 +a f(exp(i9)§+& ’

(3

If Eq. (3) is analytically extended to arbitrary complex
values of the parameter /, the principal nonunitary
series of representations of SU(1, 1) is obtained. In the
following, Eq. (3) will be considered for arbitrary com-
plex /. On the other hand, the following discussion will

be restricted to single valued representations of SU(1, 1).

There exist many valued representations of SU(1, 1),
which are single valued representations of its universal
covering group SU(1, 1)’. The representations of the
principal nonunitary series of SU(1, 1)’ and its genera-
tors are discussed in Ref. 9.

In order to discuss conveniently the principal non-
unitary series of representations in terms of the Lie
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FIG. 2. Structure of representation r** for I+ 0, I integer.
See Fig, 1 caption.

algebra su(l, 1), the following notation is introduced.
As orthonormal basis for the space L¥(T) the set of
functions exp(-ik8), k=0,+1,+£2, .-, is chosen. Then,
if n=0, exp(—ik8)=|k) and if h=3, exp(-ik0) =k +3).

The action of the differential operators 4, e, f on the
basis elements |m) is given by the formulas (the differ-
ential form of these operators is, for example, given
in Ref. 10)

p(h) | 1) =m | m),
ple)|m) =5(m =1 |m +1), (4)
P | ) == 5m +1)|m = 1).

These representations of the principal nonunitary series
are denoted 7**". If /=0, then 7' is irreducible if and
only if 7 is not an integer. If A =5, then 7' " i irredu-
cible if and only if / is not half-integer.

In the following let / be integer if 2 =0 and half-inte~
ger if h=3. Then for I < — 1 the representation 7" has
two invariant subspaces on which the representations
D, and D; of the discrete series are realized. The quo-
tient representation 7#**/D?, & ; is a finite-dimensional
representation with highest weight — /- 1, This repre-
sentation is denoted by F-' (Fig. 1).

If 7= 0, then the representation 7" has three invari-
ant subspaces. One of the invariant subspaces is finite-
dimensional, with highest weight /. This subspace car-
ries a finite~-dimensional representation, denoted by
F', The other two invariant subspaces are infinite-
dimensional, with highest weight / and lowest weight
— 1, respectively. (See Note added in proof at end of
article.) On both of these invariant subspaces an in-
decomposable representation of su(l,1) is realized.
Both contain a finite-dimensional invariant subspace
with highest weight / and lowest — [ respectively, on
which the representation F' is realized. The infinite-
dimensional orthogonal complements, however, are not
invariant subspaces. The two indecomposable repre-
sentations are denoted by D; and D?; (note that here
1= 0). It holds D?,/F' ~D},; and D;/F' ~D7; , (Fig. 2).

If /=-3%, then the representation 7*/2" qecomposes
into the direct sum of the two irreducible unitary rep-
resentations Dj ,, and Dl (Fig. 3).

If I is neither integer or half-integer, then we obtain

D%, D,

-y

FIG. 3. Structure of representation n~1/%%,
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FIG. 4. Structure of representation o,, A = n/2,

infinite-dimensional irreducible representations which
are neither bounded below or above.

B. Representations of su (1, 1) with highest (lowest)
weight

The next type of representations of su(l, 1) to be
considered are those which are bounded on one side,
i.e., representations which have either a highest or a
lowest weight.

Representations with highest weight (see prededing
subsection A) are the representations D;. For < -3
they are irreducible; for /> 0 they are indecomposable.
Representations with lowest weight are the representa-
tions D;. For [ > ; they are irreducible and for [ <0
they are indecomposable. The reducible representations
D; and DZ, are not representations with highest or low-
est weight as defined in Ref. 7. See Note added in proof.

If xy, Xy, X5, - - - denotes a basis of an infinite~dimen-
sional vector space V and if A is a complex number,
then the following relations hold for inifinite-dimension-
al representations with a highest weight (similar rela-
tions are obtained for infinite-dimensional representa-
tions with a lowest weight) of the type of Ref. 7:

i:0,1,2,---,
i:011)2""’

pall)x; = (A =d)x,,

PalNx;=x;+1,
pale)x =0, (5)
pA(U)Xi:_i[A—%(i— 1)]Xi-17 l:l, 2,3, Tt

These representations are called elementary represen-
tations and are given the symbol d, . For more details
the reader is referred to Ref. 7.

C. New indecomposable multiplicity free
representations of su {1, 1)

Let 7 denote a representation of su(1, 1) which is
multiplicity free. Let |A) denote one of the eigenvectors
of I such that w(h)|A) =A|A). The operators 7{e™) and
n(f"), m,n=1,2,3,... act on the vector |A). A se-
quence of vectors is obtained:

e (A W), 1| A, |A), w(e)| Ay, m(e) [ A), - (6

All vectors of this sequence are eigenvectors of n(k)
corresponding to the eigenvalues

e A2, AL A A+F A2,
We denote the vectors of the sequence (6) by the

symbols

A=), A, (A, A+, A2, (7

In the following we proceed to analyze in general the
types of representations that can be realized on the com-
plex linear space for which (6) constitutes a basis.

Some of the types of representations that will be found
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represent nothing new. A resumé of these has been
given in subsections A and B. Other types of represen-
tations will, however, be found which we believe to be
unknown hitherto. 8

Case A: None of the vectorsn(f")I A+m), n,m
=1,2,3,-.-, is equal to zero.

(a) No vector of the sequence ()| A +m), m
=1,2,83,--+, and of the sequence 7(¢)|A -n), n
=1,2,3,---, is equal to zero.

Since the representations discussed are multiplicity
free, it holds that 7(A{A +m) ~|A+m ~ 1) and
m(e)IA =n) ~|A~n+1). Therefore, the representation
T is necessarily irreducible. Since every irreducible
representation of a semisimple Lie algebra can be ob-
tained from some representation of its principal non-
unitary series (see, for example, Theorem 8.10 in
Ref. 11), it follows that the set of representations 7
corresponds to the set of irreducible representations
of the principle nonunitary series 7'+* with I not an
integer for £ =0 and / not a half-integer for h=3.

(b) For some integer m, m >0, it holds that 7(e)
X|A—=m)=0. The sequence (7) is relabelled by taking
the vector |A - m + 1) as the vector {A) of the sequence
(7). In the new notation, then, m(e)|A - 1) =0 holds.
Utilizing this equation, it can be proven, by means of
induction, that the following equations hold:

71(0)|A—n>:(n—1)(g—A)\A—n+1), n>0, (8)

n -1

7r(f)|A+n'>:n'< 3

+A)\A+n'_1>, n'>0, (9

n,n’ integers. A simple computation proves that the
formulas (8) and (9) define representations of the alge-
bra su(l, 1), i.e., that the commutation relations (1)
are satisfied.

In Eq. (8) the coefficient on the right side becomes
zero, for arbitrary A, if n=1. This coefficient becomes
zero also for A=n/2. The coefficient on the right side
of Eq. (9) becomes zero for A=—(n'-1)/2.

In the case of A=— (n' — 1)/2 the representation has
two invariant subspaces with basis elements

|A_1>, lA-2>:|A"3>’D"
and
|_A+1>’I_A+2>) |_A+3>)'.‘y

respectively. Thus, this representation does not satisfy
the condition of Case A which is considered at present.
In fact, this representation is equivalent to one of the
reducible representations of the principal nonunitary
series of representations 7,

Let A#—(n'-1)/2, n’ >0, integer. If A is complex
and A#n /2, n>0, integer, then the formulas (6)—(9)
define a representation g, [ in the space with the basis
Eq. (6)] which has only one invariant subspace with
basis elements

|A-1),|A-2),[A-3),--.

The subrepresentation of su(1, 1) on this subspace is a
representation with highest weight A — 1. The represen-
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FIG. 5. Structure of representation o,, A=7/2,

tation which is carried by the quotient space is a repre-
sentation with lowest weight A. The representation o,
is an indecomposable one, i.e., it cannot be decom-
posed into a direct sum of the two representations with
highest weight A -1 and lowest weight A (Fig. 4).

The value of the Casimir operator for the represen~
tation o, is A(1-= A).

Let A=n/2, n>0, integer. Equations (6)—(9) give
now, on the space with basis (6), a representation o,
with two invariant subspaces. One of the invariant sub-
spaces has the basis

=AY, [=A-1), [=A=2),---.

This subspace is irreducible. The other invariant sub-
space has the basis

‘A_1>9 ]A—2>! lA"3>) Tt

This subspace is reducible and has the first invariant
subspace as a subspace. The representation which is
realized on this second invariant subspace is indecom-
posable (Fig. 5).

The eigenvalue of the Casimir operator in the repre-
sentation o, is again A(1-A),

It may be worthwhile to point out that from the repre-
sentation o, A=n/2, n=1,2,3,..., the same repre-
sentations can be obtained, defined on its invariant sub-
spaces and quotient spaces, as from the representations
7't =A-1, and 7'"", =~ A, even though their
structure is distinct.

Case B: None of the m(e")|A—m), n,m=1,2,3,-+,
is equal to zero.

(a) None of the 7(e)|A-m), m=1,2,3,---, and none
of the T(NIA+n), n=1,2,3,---, is equal to zero.

This yields the same set of representations as case
AQ).

(b) For some #iz, m >0, it holds that 7(f)| A+ m)=0.
The sequence (6) is relabelled by taking |A+m ~1) as
the vector |A). In the new notation it then holds that
7(f) I A+ 1) =0. With the help of this equation and using
induction, it can be proven that the following equations
hold:

@) A=n)y=n((n-1)/2=A)|A=n+1), n>0, (10)
1D A+ =" = Dn'/2+ M| A+n" = 1), »'>0, (11)

A2 AL A AL A2 A3
A% -7/

FIG. 6. Structure of representation 74, A = —n'/2,
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n,n' integers, A direct evaluation shows that the for-
mulas (6), (7), (10), and (11) satisfy the commutation
relations (1).

The coefficient on the right side of Eq. (10) is equal
to zero if A=(n-1)/2. The coefficient on the right side
of Eq. (11) is equal to zero if ' =1, for arbitrary A,
and for A=-n'/2.

If A=(n-1)/2, then the representation has two invari-
ant subspaces. The first one has as basis elements

'—A_l>’ ’_A‘2>a ‘_A—3>:”°>
while the second one has as basis elements
[A+1), |[A+2), [A+3),---.

This representation does not satisfy the condition for
Case B. It corresponds to one of the reducible repre-
sentations 7'+,

Now consider A#(n-1)/2, >0, integer. If A is
complex, A#-n'/2, n' >0, integer, then a representa-
tion 7, with one invariant subspace is obtained. The
basis elements of the invariant subspace are given as

A+, |A+2), [A+3), ...

This subspace carries an irreducible representation
with lowest weight A+ 1, The representation induced on
the quotient space with respect to the invariant sub-
space is a representation with highest weight A. The
representation 7, is indecomposable (Fig. 6).

The value of the Casimir operator for the represen-
tation 7, is A{1 - A).

Now consider A=—-#n'/2, »’ >0, integer. Then the
formulas (6), (7), (10), (11) define a representation 7,
with two invariant subspaces. One of the invariant sub-
spaces has the basis vectors

[A+1), [A+2), [A+3),.-.

and is irreducible. The other invariant subspace has
the basis

\_A>1|—A+1>;|"A+2>9"'

and is reducible, with the first invariant subspace as
an invariant subspace. In fact this second invariant sub-
space is indecomposable (Fig. 7).

The value of the Casimir operator on 7, is A(1-A).
The representations 7,, A#(n-1)/2, >0, integer,

and o, _, yield the same set of irreducible representa-
tions, defined on subspaces of their quotient spaces.

)

A=A N A2

A A N N2
A=-n'fz

TIG. 7. Structure of representation 7,, A=—n'/2.
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FIG. 8. Graphical representation of basis of vector space V
=Q/I., The arrows indicate the action of the shift operators on
the basis elements, Basis elements along each dashed line
correspond to the same weight.

Il. REPRESENTATIONS OF SU {1, 1) ON THE SPACE
OF ITS UNIVERSAL ENVELOPING ALGEBRA

Let 2 denote the universal enveloping algebra of the
complexification of su(1, 1). In an earlier article the
universal enveloping algebra was used to construct rep-
resentations with a highest (lowest) weight.” Here the
universal algebra @ is used to construct other types of
representations of su(l, 1), namely representations
whose weight subspaces are infinite-dimensional. Prop-
erties of these types of representations of su(l, 1) are
analyzed below and their intimate relationship to the
multiplicity-free representations of Sec. II is
demonstrated.

In the space of the enveloping algebra Q the left multi-
plication by elements of the algebra su(l, 1) defines a
representation denoted by 7. Consider in Q the left ideal
I that is generated by the element # - A of Q, where A
is some fixed complex number. Thus the elements
x(h - A), xcQ, form the ideal I, Therefore, 7 can be
reduced to a representation on the quotient space V
=Q/I. This representation is denoted by p,.

In the following a basis is chosen in the space V and
the representation p, is determined with respect to this
basis. A basis for V can be selected in different ways.
The elements

1, fme”,

excluding the case n = =0, can be chosen as a basis
for V. It is then easy to evaluate that p, (k),p, (f), p,(e)
act on those basis elements as

n=0,1,2,.---,m=0,1,2,---,

Pa(M1=A1, prle)l=e, py(N1=f, (12)
palB)fe™ =(A=n+m)fle™, (13)
pa(Nfrem =ftem, (14)
pale)fre™ =fre™ —n(A+m ~ (n-1)/2)f"e™, (15)

PA(C)f"e™ =2f™ ™ — (A +m)(A+m + 1)f"e™.

The basis elements of V are shown in Fig. 8. The dot-
ted lines in this figure connect elements that correspond
to the same weight. The operator p,(f), acting on a
basis element, causes a vertical upwards shift in Fig.
8, while the operator p,(e) acting on a basis element

2013 J. Math. Phys,, Vol. 19, No. 10, October 1978

causes a simultaneous shift veritically downwards and to
the right. Therefore, as is seen from Fig. 8, the oper-
ators p,(f), pple), acting on the basis elements cause
upward shifts, downward shifts, and shifts to the right
only. This implies that for every fixed positive integer
s the subspace V; of V with basis elements

fnem’
is invariant under p,. The corresponding subrepresen-
tation is denoted p;. The representation on the quotient
space V/V, is denoted by °p,. The representation 1o,
is then the so-called elementary representation d, with
highest weight A (for the definition see Ref. 7; the dj
of this article is, in fact, the d,, of Ref. 7). In general,
the elementary representation d,,, with highest weight
A+ s is realized on the quotient space V,/V,y. Thus,
the representation p, consists of the elementary
representations

n=0,1,2,..., m=s,s+1,s+2,---,

(16)

It is now possible that for some of the representations
of the sequence (18) Casimir operator C, has the same
eigenvalue. This is the case for two representations

dye and dyee if A'(A"+1)=A"(A" +1), A"+ A", The only
solution to this equation is A" =~ A~ 1. Therefore, rep-
resentations of (16) can have the same eigenvalue of C,
if A is equal to (- m)/2, m > 1, integer. Then every pair
of representations

dA: dA+1’ dA027 e

(d-m/Zy dm/Z-l)’ (d-m/2+11 dm/2-2): e (17)

corresponds to the same eigenvalue of C,.

Let us now consider the case that all of the represen-
tations of (16) have a different eigenvalue of C,, i.e.,
that A#-#n/2, n>1, integer. In this case the represen-
tation °p, can be decomposed into a direct sum of rep-
resentations with highest weights. This decomposition
is achieved by means of the following extremal vectors
(a vector y is called extremal if p(e)y =0):

s=1( i -1
x°:1+2{ﬂ j[A+%(j+1)]} riet, (18)
i=1{j=1
S-__"\l-l i -1
¥M=e™+ ) STjA+m+5G+1)] tgmri
izt (i=
m=1,2,...,s-1. (19)

The s subspaces obtained from these s extremal vec-
tors, with the basis elements

Ak A3 A2 A=l A L A+l
P ,
ad 7 - //’ Vi , .
!s . Vi . , e %
2
L ef // afs lafe e L, ofF 7 Lo
.
s . i 7 , e ,
I s , , .
3
L ef* RAC IR 2O o , A+
Vi I3 4 3 s . 4
s s s 7 4 7 ’
Tl AL Aot
L, ef’ et M et et ‘
e 7’ 4 // ’
2 // L L e v L //
{ I ef? a1 7 e’{z// ey(l et - S A+S
e , e 7 L7 7 el
’ // 7 v e // //
1 e RG] e <t et e‘f//
,
// ’ // // // //
e
1 e e* e’ e e et

FIG. 9. Same as Fig, 8, except that a different basis has been
chosen for the vector space V, The arrows indicate again the
action of the shift operators on the (new) basis elements,
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FIG. 10. Representation ®p,

P 2L on quotient space V/V;, The
|1 // f'e'//’ p A dots correspond to represen-
P ey A tative basis vectors f, f",
e e - wy ST€E, =0, 1, 2, -+, of the
R R quotient space. For A= —3/2
i - ;,g e this representation can be de-
S0 b, N composed into the direct sum
[ ‘ . ’/ (/z . of the elementary representa-
i e « 7 tions d,, dp,, ds,, with basis
P A x0, A, and x%,, respectively,
1 e e1
xorfxoyfzxoy e (20)
e, m=1,2,...,5-1, (21)

are invariant under °p, (in the space V/V of the rep-
resentation °p, it holds fi¢"=0 if n> s), as can be veri-
fied by direct evaluation. In fact in each of the s distinct
bases, (20) and (21), the representation obtained is
given by Eq. (5). Thus, on the subspaces defined by

(20) and (21) the representations dy, dy,q, ..., dsesq are
realized, with Egs. (18) and (19) as the vectors cor-
responding to their highest weight.

Next we consider the case of A=-n/2, n>1, integer.
In this case pairs of representations exist, Eq. (17),
for which the Casimir operator C, has the same eigen-
value. In this case the representation °p, can be de-
composed into a direct sum among which those of the
representation d, ,d,,,,d; 5, . . . ,ds,,, OCcur for which
C, has different eigenvalues. For these representations
the vector corresponding to their highest weight is ob-
tained from Eqs. (18) and (19). Representations for
which the Casimir operator has the same eigenvalue oc-
cur in pairs, as was shown before in (17). These pairs
then occur as direct summands in the decomposition of
the representation g, , while each pair itself cannot be
decomposed into a direct sum. For these undecom-
posable pairs of representations Egs. (18) and (19) fail
to determine an extremal vector which belongs to the
highest weight. This is best demonstrated by means of
an example. Let A=-3/2 and consider the representa-
tion 3p, . This representation consists of the represen-
tations d_; 5, d_,,,, d,,,. The Casimir operator has the
same eigenvalue for the representations d_;,,, d,,,. The
representation 4, ,, acts invariantly on the subspace that
is spanned by the basis elements fme?*, m=0,1,2,---.
Its extremal vector belonging to its highest weight is ob-
tained from Eq. (19) and is x2 =¢?. The extremal vector
belonging to the highest weight of the representation
d_,,, is again obtained from Eq. (19) and is x! =e + 2f¢?.
The extremal vector belonging to the highest weight of
the representation d_y,,, if it exists in %p,, A =-3/2,
is to be of the form x°=1+a, fe + a, f2¢*>. This vector is
to satisfy 3p, (¢)x®=0. This implies

e+sae+a fet =0,

a condition which cannot be satisfied. If, however, the
vector x®=1-2je +f2e* is chosen, then it follows that
3p,(e)x’ =~ 2 fe? is a vector in d; ;5. It follows therefore
that the subrepresentation generated by x0 is really in-
decomposable, as it is impossible to construct an ex-
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tremal vector for the highest weight of d_;,,, while a
vector X' of weight A=~ 3/2 can be found which has
components in d_;,, and dy,, only. The representation
3ph, A=-=3/2, can thus be decomposed into the direct
sum of the representation d_;,, and an indecomposable
representation d which consists of the representations
d_;9 and dy,,. The representation 4, ;, is a subrepresen-
tation of d, while d_;,, is realized on the quotient space
of d with respect to d;,,.

In the general case of paried representations analo-
gous properties hold. Whenever in Eq. (18) or (19) one
of the expressions [A +m +3(j + 1)] vanishes, it is to
be replaced by a constant different from zero. Then the
resultant vector generates a basis for an undecom-
posable representation consisting of the pair.

In the following the indecomposable representation d
of 3p,, A=-3/2, is discussed explicitly (see Fig. 10).
As can be verified by direct computation the following
relations hold:

p(R)x] = (A + m = n)x7,

PR =274,

(22)
ple)x = —n (A rm-tz 1>x,’,"_1,

2
PO = = (A +m)(A+m + Dxy,

with f*e®*~ 0, x7=f"x", m=0,1,2,...,s-1and
n=0,1,2,.... These equations hold as long as none of
the coefficients in Eqs. (18) and (19) becomes infinite.
Then a direct sum of elementary representations dy,
dpyy - -+, Ap4s1, 15 obtained. For the representation
3p,, A=-3/2, however, not all of Eqs. (18) and (19)
hold. In fact x° had to be changed to X°. For the new
basis elements ¥} =f"x! and ¥ =f"x*, n=0,1,2, -,
Eqs. (19) hold. Thus, both x}, #=0,1,2,---, and %%,
n=0,1,2, -+, form a basis for a (multiplicity-free)
elementary representation, namely d,,y and d_y,,, in-
duced by 3p, on the respective subspaces. If the action
of the elements of the algebra on the basis elements
x0, n=0,1,2, -+, is studied, it turns out that they do
not form an invariant subspace. The basis elements
%) =f"%" are connected, through the action of the alge-
bra, with the basis elements x2, #=0,1,2,---. In fact,
it can be shown that the following relations hold (&
—1-2fe+72e?, xt=eb):

FIG. 11, Indecomposable part
of representation 3p, for A
=—3/2, The dots represent
the elements of the basis xJ,
xZ, n=0, 1, 2, «+-, of this
indecomposable representa-

2 tion. The dashed arrows indi-
cate the action of the shift
operators p(f) on the basis

X elements, the solid vectors
the action of the shift opera-
x2 tors ple). The eigenvalues A
of p(#) on the basis elements

3 are indicated on the left, The
representation 3p,, A=-3/2,
decomposes into the direct
sum of this indecomposable
representation and the ele-
mentary representation d_q,,.
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p(x)=— (3 +n)x), p(h)x%=(3 - n)xL,
p(f);g :;del’ p(ﬁxi :xgﬂ-ly
ple)xS =4n(n +2)xd 4 - 252, (23)

ple)xl =zn(n - 2)x 4,

3,2

PO =3x8~ ax?,,, p(C)x?=—3x2,

Thus Eqs. (23) define an indecomposable representation
d (see Fig. 11). Ordering the basis elements in the man-
ner x{, x5, x), %3, %3, x%, - - -, the matrices p(h), ple), p(N),
and p(C) take on the following form for this indecom-
posable representation d:

pO)=|"""""

Let us now consider the representation p,. The repre-

sentations dy, dy,q, dpeg, >+

lowing manner:

» -
dy
* dA+1 0
* * dA+2
* * *

are coupled in p, in the fol-

The representation p, has no subrepresentation with
highest weight. If it did have, then there would exist a
vector of the form

k

=3 a fmrient,

i=0

such that p,(e)x° =0 for some finite integer k= 0 (ac-
cording to the definition of Q). From the last of the Eq.
(15) it follows readily that p,(e)x’+0,

The representation p, contains also no subrepresen-
tation which consists of a finite number of representa-
tions with highest weight (these representations may be
coupled into indecomposable representations). Such sub-
representations contain invariant subrepresentations
with highest weights.

The representation p, can, however, be decomposed
into a direct sum of representations with highest
weights, or at least into a direct sum of pairs of rep-
resentations with highest weights which are coupled in
an indecomposable manner, if the space V of p, is ex-
tended to include (formal) infinite sums, and the action
of p, on these infinite sums is defined by linearity. The
resultant representation is denoted by p, . If A% —m/2,

— | 1 1 1 !
3 1 i 1 |
-2 | ! t I |
1) | I I )
L I [— |
T B e
SN |
1 -2 ] 1 |
P S . I [ [—
1 (. 1 1 I
o=| ! BN : :
T . |
IR === i sy
: : 1= 2 g ! I
| | R !
R A A e
: I I |—-12l !
I I i 1 71
I I 1 I =71
[ P [ [, I o
1 I 1 1 i
1 | | t |
L -
o 11 |
Oi_ 0 l
B T
10 &+ | .
1 ! 1 I 1
SN I
S B D
I
[ 0: : ! ’
"-—:'__':_-‘l__-'l _____ :__
] I 1 :0 : :
R
TV e T
-——=== 1 1 !
[ 1 1 1 0!
—_———le e - - |
] 1 1 1 !
! l i 1 r
o Ly ] 1 | T
0 2 L | l
0, -3! ! b
LT
-2t ot Or 1
T i0 11 i
7
ple)=|___i-2 i o’ & i |
i i 10 12
b __a=2) 0% 4l
i ) 1 170 1
1
i i-2 1 ol
et EEEE RS EE Rt S
| 1 : : | : _
2015 J. Math Phys., Vol. 19, No. 10, October 1978

m>1, integer, then p, can be decomposed into a direct
sum of the representations d,,d,,,,d,,., . The vectors

o« i 1
x0:1+2{ﬂj[A+§(j+1)]} fie,
i=1(ji=1
o i
X"‘:e”‘-}-E{Hj[A-f-m +§U+1)]}-1fiemn',
i=1 {j=1

m=1,2,3,---,
are the extremal vectors belonging to the highest
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weights A, A+1, A+2, ... of these representations. The
proof is simple, and we omit it.

¥ A=~wm/2, m>1, integer, then p, can be decom-
posed into a direct sum of the representations Apvgs
dy,eups** (with s an integer such that A + s> m/2) and

the representations into which $p, decomposes.

Instead of the basis introduced in the space V=%//
that was underlying the discussion so far, ancther basis
can be chosen. Namely, the basis 1, e™f", m =0, 1,
2,...,1=0,1,2,..., excluding the case m=n=0. It
is easy to show that in this basis the following relations
hold for the representation p, :

PN = AL, pyle)l=c, py(N1=f,
paUe™f " =(A+m —n)e™f",

patlen 7= emiyr,

pa(Nem™fr =™ [ A—n+ (m = 1)/2]e™fn,

A graphical description of this basis is given in Fig.
9. The action of the shift operators p,(¢) and p,(f) on
the basis elements is also indicated in this figure. It is
easy to realize that for every fixed integer s > 0 the sub-
space H; of V with the basis

emft, o m=0,1,2,.-., n=8,8+1,8+2,..-,

is invariant under p,. The representation induced by
ps on the subspace H; is denoted by T, . The represen-
tation on the quotient space VIH, will be denoted by
*m,. It is easy to observe that each of the representa-
tions on the quotient spaces H;|H,,, is a representation
with a lowest weight A-S. We denote this representa-
tion by d; . Thus the representation p, is of the form

14
dA
i
¥ odyg 0
’
* * dl\-2
* % *

L .
Therefore, the representation p, admits two different
structures. It can be represented either as a semidirect
sum of representations d,,, with highest weight, or as

a semidirect sum of representations d _; with lowest
weights. This is contrary to what could happen for rep-
resentations with finite-dimensional weight spaces.

The detailed structure of the representation p, with
respect to this new basis is completely analogous to the
one in the old basis, except that now the representa-
tions dj_, are representations with lowest weights. Thus,
p, decomposes into a direct sum of representations dj _,,
for which the eigenvalue of C, is different, and a direct

sum of pairs of dj_,, the eigenvalue of C, being the same
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for the two members of a pair, but being different for
the various pairs. (Pairs are obtained for A=m/2,

m > 1, integer). The extended representation p, decom-
poses in the same manner as before, the d; _; replacing
the dA..su

Two different decompositions of the representations
P, and p, have thus been obtained. It may be that there
exist still other decompositions. An indication of this is
given by the following observation for the representa-
tion B, . The vector (formal sum)

x=147),a,f%"
s=1

with
B A+s+1>"(A+s s i(A+s-i)<A+s—1-i
‘13‘( A a+v1) 22\ a1 A

is an eigenvector of the Casimir operator C, with eigen-
value — A(A+1) (for m, n positive integers (J) =m! /n};
this notation is extended in the usual manner for other
values of m and n), Acting on x by p,(v), y €, an in-
variant subspace is obtained which is an eigenspace of
C,. The representation p, induces on this subspace a
representation of su(1, 1) which does not have a highest
or lowest weight.

Note added in proof: A vector x is called extremal, if
p(W)x=A(h)x for h€ G, A(h) a linear form on the Cartan
subalgebra, and p(e)x=0 or p{f)x =0. A representation
may have several extremal weights. If a representation
is bounded, either on one side or on both sides, then
it has at least one extremal weight, Representations
bounded either on one side or on both sides, are re-
ferred to as representations with a lowest or highest
(extremal) weight. This differs from the definition of a
representation with highest or lowest weight as given in
Ref. 7. Condition (3) of Ref. 7, namely, V={pla)xla
€ @} may not be satisfied. This is, for example, indeed
the case for the representations D; and D?, of Fig. 2.

If the definition of Ref. 7 for a representation with
highest or lowest weight is used, then it will be ex-
plicitly stated in the text.
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On the interaction of the type »x2/(1+gx?)
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The ground state and the first two excited state energy levels for the interaction of the type Ax 2/(1+gx %)
have been calculated nonperturbatively as the eigenvalues of the one-dimensional Schrodinger operator
defined by Au == —u" + x “u +Ax u /(14 gx ). The Ritz variational method in combination with the
Givens-Householder algorithm has been used for numerical computations.

1. INTRODUCTION

The purpose of this paper is to study the eigenvalue
problem Au=¢u, where A is the one-dimensional
Schrodinger operator defined by

-2

Ax
Au=—u"+xPu+ ———u,

1+g’ _OO<X<°O: )\a g>0 (1)

and #(+ ©)=0. Here the dimensionless parameter ¢ is
related to the energy E in conventional units by E

= kY E/m e, where k is the strength of the harmonic
oscillator potential, and A and g are dimensionless
parameters.

Interest in the above type of interaction Ax?/(1 + gx?),
is derived from several contexts, In one application,
as pointed out by Biswas el «l.,! the Schridinger equa-
tion with such an interaction Lagrangian is the
analogue of a zero-dimensional field theory with a non-
linear Lagrangian, which is of current interest in parti-
cle physics. On the other hand, as pointed out by
Haken, ? such a Schrddinger equation may be related
indirectly to certain specific models in laser theory in
a manner originally treated by Risken and Vollmer,®
These authors have reduced the Fokker—Planck equa-
tion of a single mode laser to the Schrodinger equation.
Subsequently, the general reduction of the Fokker—
Planck equation to the Schrodinger equation under
certain conditions has been treated in other works,*
The expression of the type xx?/(1 + gx*) occurs in this
context if the gain saturation is taken into account for
arbitrary high photon numbers, where x? denotes the
photon number. °

To obtain the eigenvalues for the problem of the type,?

which is not exactly solvable, one has to use some ap-
proximation scheme, such as one based on a varia-
tional or perturbation method. Among these, the vari-
ational method, in some form or other, is known to be
one of the most effective techniques for the approximate
calculation of the first few eigenvalues of a semibound-
ed operator in a Hilbert space. %’ Among the commonly
used variational schemes, the Ritz method usually
finds an upper bound for the eigenvalues, whereas the
Weinstein method, in its original form, finds a corre-
sponding lower bound. This technique has been used by
Bazley and Fox’ in connection with the helium atom and
the anharmonic oscillator. Because of its simplicity
and because of its success in finding eigenvalues in
several other contexts considered earlier by the
author, 8~1° We have chosen to use the Ritz method in
the present context too.
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The Ritz method® essentially considers the repre-
sentation, in terms of a symmetric infinite matrix,
of a positive operator A in an underlying Hilbert space
H. The basis {u,} c D, for the representation is chosen
in such a way that the sequence {u"} is complete with
respect to the energy norm defined by

I u”i:(Au,u). (2)
Then the eigenvalues of the truncated N XN principal
minors of the infinite representation matrix of A with
respect to the so-chosen basis approximate the exact
ones closer and closer as the size N of the truncated
form is made larger and larger. That is, if ¢, and ¢/’
are respectively the kth exact and approximate eigen-
values (as obtained from the above mentioned truncated
N XN form), then ¢’ >¢N*) —~¢ from above as N— =,
This is the numerical scheme which will be adopted in
the present paper. Experience shows that one of the
main difficulties in this kind of approach is that of find-
ing an efficient algorithm for the computation of the
elements of the corresponding Nx N matrix to a de-
sired accuracy for sufficiently large N, a subject which
will be discussed in Sec. 2. Another difficulty, namely
the difficulty in computing the eigenvalues of a large
matrix may arise in this context. However, the fre-
quently used Givens—Householder algorithm for finding
the eigenvalues of a symmetric N XN matrix'*+!? does
not seem, according to our previous experience, to
present any significant difficulty, particularly in such
problems where the matrix is not drastically ill-defined.
Therefore, the present scheme has been based on the
Ritz method in combination with Given—Householder
algorithm.

In Sec. 2 we discuss the numerical schemes for the
computation of the elements of the representation
matrix. It turns out that the Gauss—Laguerre quadra-
ture used to evaluate the integrals representing the
matrix elements is effective only for small g. As an
alternative, a recursive evaluation of the matrix ele-
ments has been used for large g.

In Sec. 3 we discuss a scale transfoermation of the
type vy =ax which transforms (1) to a form which is
particularly used for perturbative treatment for the
cases with small g and large x. On the other hand, for
the variational method we use in this paper, the matrix
elements of the corresponding transformed operator for
small g and large X can be more effectively computed
by the quadrature method, and therefore this serves
also as a check for the results, as obtained starting
from Eq. (1).

© 1978 American Institute of Physics 2018



Finally we present the approximate eigenvalues for
several values of the parameters X and g in Sec. 4.

2. ANALYTIC DERIVATIONS AND NUMERICAL
SCHEMES FOR THE MATRIX ELEMENTS

We begin with the obvious choice of L,{— =, ) as the
underlying Hilbert space with a dense subset D, as the
domain of definition of A in L,(— «, «), from which one
can derive a lower bound for the eigenvalues as indicated
below. With the usual definition of the inner product

{u, v) :f_m uv dx, (3)

in Ly(— », ), it follows from (1) that

(Au, 1) f <u'2+x 1+gx >

By virtue of Eq. (4) and the minimum criteria for the
eigenvalues, and since X and g are both positive, it is
easy to derive that A is positive definite. In fact,
{Au,wy > 1 for all u= D, with |lull = 1; more generally,
>eM, k=1,2,3, -, wheree” =2k - 1 are the cor-
responding eigenvalues of the harmonic oscillator.

(4)

It is therefore natural to choose the corresponding
orthonormal set, {u"}, of the harmonic oscillator eigen-
functions defined by

w, = (2" n - ! 7/ 2]V 2exp(-x2/2)H, _,(x),

n:1)2’37 "%y (5)

as the basis for the representation of A, where the
H's are the Hermite polynomials.

In the above, the indexing of the harmonic oscillator
functions u, has been chosen to start at n=1 (instead
of conventional n=0) merely for computational
convenience.

The purpose of this section is to evaluate the ex-
pressions of the type (Au,, u,) for the elements of the
representation matrix of A with respect to the ortho-
normal basis {un} defined by (5).

Since — ) + x%u,=@2n -, n=1,2,3,+++, we ob-
tain from (1), (3), and (5)
S = A, ) =02n-1)5_ +xG,_, (6)
where
. 1
Gmn:T( mn—Hmn) (7)
8
and

Uy
f 1 + gx? d (8)

Also since H (- x)=(~1)"H, (x), it is clear from (8)

that H, =0 unless m +n is an even integer. In this
case, we need to evaluate only those elements for which
m+n is even, and then

Touu,
H = =
- 2/0- 4o —4r- dx, m+n= even. (9)

Clearly the integrals of the type (9) cannot be evalu-
ated exactly and therefore we have used two separate
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numerical schemes as discussed in the following
subsections.

A. Quadrature method

Since the generalized Gaussian quadrature formulas
are frequently used for the approximate calculation of
integrals'®:!* we have used one such quadrature for the
evaluation of the integrals (9). Making change of the
integration variables by the substitution ¥ =x%, we can
express the integral (9), by the generalized Gauss—
Laguerre formula, in the form

) —WF d N
" :/ exp( y3)1 gy) Y 3 AW R,
0

m ! k=1

N:2’39 °%y (10)

where

Hy OGN H (v7)
'y — m=l n=13.
F(})— Cmm 1 +g,v

(11)
and C,, is a constant. Here the weights Af,’” and the
nodes v(”’ [i. e., roots of the associated Laguerre
polynomial L/’ (y) of degree N] are readily available
from standard monographs. !* The quadrature formula
is exact whenever F(y) is polynomial up to degree 2N

— 1, Otherwise, some error is involved, which has been
estimated in Ref. 14. We have settled on the accuracy
in a different way to be explained below.

We used the 32-point generalized Gauss—Laguerre
quadrature as available from the IBM package. Unfor-
tunately, the results obtained were too inaccurate (even
in the second decimal places) for large g, say g= 100,
even for the first element H,;. This may be due to the
fact that the graph of exp(- x?)/(1 + gx?), for large g, is
almost entirely concentrated near x =0, and falls rapid-
ly, whereas the quadrature points do not mesh fine
enough near x =0. Therefore, as an alternative, this
quadrature up to 64-point has been generated by the
author using Sturm’s separation theorem and Sturm
sequence method. The improvement was significant,
but not significant enough to ensure sufficient accuracy
to serve our purpose. This quadrature, beyond the 64-
point, has not been generated here or elsewhere to the
knowledge of the author.

On the other hand, for small ¢ (i.e., g<1) this quad-
rature yields fairly accurate results, as indicated by
the error estimates obtained as the difference of the
results given by the 48-point and 64-point quadrature
formulas. In this way matrices, up to 30 x30, accurate
to about five decimal places, have been obtained for
small g. For higher values of g, we have used, as an
alternative, a method of recursive evaluation of the inte-
grals, which should, in principle, be capable of gen-
erating the matrices of arbitrary size. This will be
discussed in the following subsection.

B. A recursive evaluation of the integrals
Using the standard recurrence formula
H,, (x)=2xH,~2rH,_,
for the Hermite polynomials, we obtain for the corre-

sponding u,, defined by (5),
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un:[Z/(n - 1)]1/296%"_1 - [(’ﬂ— 2)/(n—- 1)]1/274"_2, (12)

where
1 V2x
=573 exp(—x2/2), Uy =TT exp(~x%/2). (13)

By repeated use of (12) and a little rearrangement it
may be shown that

_2 (1+g%°) , ,
"= [6r= D = 2JJFTE Y2 = Cnllne = nttpes (14
where
_ 2/g+2m-5 f(n=3)n-4) \V/2
- =22’ d"_<(n— 1)(n—2)) . (15)

From (14) and the definition (9) of H,,, we obtain our
basic recursive formula,

2
H”‘":a (n—1)(n-2)]}"?

c H d H

myn=2 _ Un'tmyn-2 T “n'tm, n-a

(16)

where H,, =0 unless m +#n= even. Equation (1) implies
that the mth row of the matrix (#,,), »>m, can be gen-
erated from the very first two nonzero elements in the
upper triangle of (H, ). Also the second nonzero ele-
ment in the mth row (i = 3) of the upper triangular
form of H,, can be obtained from the previous row by
setting n=m +2 in (1) and using the symmetry of H .,
in the form

2

Hm,m+2 :g 7?/1(71’1, T 1) /2 = cm+2Hmm - dm*sz-Z,rm m = 3.

(am

On the other hand, the diagonal elements can be com-
puted from

1/2
W
Hmm:<n,z - 1> Hm-l'm+1

m—2\/2
+Hm-1,m-1—<1n_1> Hm-z,m’ (18)
To derive (20), we multiply (12) by «, and obtain
N 2 \/2 n-2\1/2
14,,_(;1—_—1) () —<n—_~_—1—> ol (19)

On the other hand, replacing » by n+1 in (12) we can
express the factor xu, in (21) in the form

1/2 9 1/2
X, = <%> El'nu + (lln 1) lln_ljl . (20)

Substituting the above expression for xu, in (21), we get

) 1/2 ’ 1/2
n n-—2
Hi = ( > Uyt T ui_l - (m) Uy ol (21)

n-1

Then by definition (9) of H,,, and (23), one can easily
obtain the relation (20).

The above three recursive formulas, namely (16),
(17), and (18), indicate that we in fact need only the
four elements H,;, H,,, H,,, H,, to generate the matrix
(H,,) of arbitrary size through the use of this recur-
sive procedure. On the other hand, using the explicit
forms of the corresponding Hermite polynomials, the
matrix elements H,,, H,,, H,, can be easily expressed
in terms of H,;, and therefore the recursive evaluation
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of the matrix elements depends only on the accurate
knowledge of H,,.

As mentioned before, this element H,; cannot be
computed accurately enough for large g by Gauss—
Laguerre quadrature. However, there is an alternative
way to compute H,, with arbitrary accuracy by using
standard Gaussian quadrature for finite intervals. That
is, we replace the infinite interval in (9) by a finite
number % of subintervals, each of length /, and evalu-
ate the integral from O to s, & to 24, and so on. The
process is terminated when the contribution from the
integral ((¢ — 1)k, kh) is less than the degree 6 of ac-
curacy required. We have chosen 2=0,5 as an initial
guess and 5 =10"1°, We have used standard 48-point
Gaussian quadrature®® to evaluate the integrals corre-
sponding to each subinterval. An obvious way to check
or improve the accuracy would be either to choose a
smaller value of & or a higher quadrature (keeping %
fixed), say, 64-point and comparing the result with
the previous one. In this way values of H,; accurate to
ten decimal places have been obtained.

It may be noted that the above method for obtaining
H,,, though very accurate and stable, is quite expensive
in computer time and therefore has not been applied to
find all the elements of the matrix. On the other hand,
the recursive procedure has been very effective,
especially for g> 2, except for some possible round
off errors inherent in many recursive procedures.
(Since this recursive method incorporates only a finite
number of arithmetical operations, there is no con-
vergence error in this method, except for round off
errors in arithmetic operations. ) On the other hand,
for small g, due to the factor 2/g in (15), the round off
errors become severe. In such a case one has to rely
more on Gauss—Laguerre quadrature, as discussed
before,

This is essentially the numerical scheme for obtaining
the matrix elements. In this way we have generated
matrices up to 30X 30 for small g’s by Gauss—Laguerre
method and up to 100X 100 for large g by the recursive
procedure. Also the accuracy of the recursive pro-
cedure has been checked by comparing the values of
the integrals for a few of the matrix elements which can
be evaluated otherwise, say, by Gaussian quadrature.

Another alternative is to use a scale transformation,
particularly useful for a perturbative treatment. This
is presented in the next section. Our purpose, however,
is to provide another way to check the accuracy of the
results presented in this paper based on a nonperturba-
tive method.

3. ASCALE TRANSFORMATION

It is clear that for g =0, the eigenvalues of (1) are
given by (217 — 1)(1 4+ A)*/? in terms of the harmonic
oscillator values. Therefore, we may choose a scaling
of the type

v=ax, where a*=1+}, (22)
to transform the original Eq. (1) into the following
form:

u

3
dy* Y- + & Y =€, i, (23)

A=~ S pngepe
51

+32u
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TABLE 1. The first three energy levels for different values of A and g are given in increasing order of excitations. Each column
designates the energy levels for a fixed A and varying g, whereas each row designates the same for fixed g and variable A,

A
g 0.1 0.2 0.5 1 2 5 10 20 50 100
1.04317 1.08495 1.20303 1, 38053 1,68561 2, 38954 3.25026 4,51242 7.06869 9.97618
0.1 3.12008 3. 23700 3.57080 4.0798 4,96859 7.05096 9.61906 13.39736 21.06073 29,78118
5.18109 5. 35866 5. 87158 6, 667 8. 08680 11,48480 15.72933 22,00557 34.76383 49.29269
1.03121 1.06196 1.15156 1, 29295 1.55104 2.19211 3.01685 4,25506 6,79278 9, 69215
0.5 3. 07389 3.14722 3. 36380 3.71390 4,37658 6.12105 8,482 12,12361 19.68503 28,8362
5,09305 5.18591 5.46320 5, 92063 6.81529 9.32076 12,948 18. 79614 31.23804 45,636
1, 02410 1,04801 1,11854 1,23235 1.44732 2.01300 2.78233 3.97769 6.47811 9,3594
1 3.05149 3.10281 3. 25577 3.50738 3.99840 5.37944 7.41751 10,79063 18.12871 26,705
5, 03444 5.11793 5.29488 5, 58977 6.17848 7.92192 10.701 15, 698 27.3756 41,441
1,01718 1,03429 1, 08519 1.16867 1.33072 1. 78213 2,44250 3. 53492 5.93198 8.7582
2 3.03276 3. 06549 3.16346 3.32602 3. 64837 4. 59337 6. 09510 8. 83870 15,497 23.743
5.03444 5. 06890 5,17240 5.34524 5, 69212 6, 73922 8.49042 11,94154 21,395 34,257
1.00978 1. 01956 1.04886 1.09729 1.19331 1.47402 1.91890 2.73391 4,75570 7.34216
5 3.01608 3.03215 3.08037 3.16066 3.32099 3. 80001 4. 59156 6,14795 10.58520 17.182
5. 01560 5,03120 5.07804 5,15620 5,31285 5, 78531 6. 58033 8.19247 13,1059 21,207
1,00594 1,01188 1.02968 1.05929 1,11830 1.29358 1. 58002 2,13243 3, 64441 5,794
10 3.00881 3.01762 3. 04405 3. 08809 3.17614 3.44004 3. 87903 4,75378 7.35010 11,572
5.00828 5.01656 5,04141 5.08284 5.16579 5,41520 5. 83277 6. 67468 9.24640 13.628
1.00343 1,00686 1.01716 1,03430 1.06855 1,17096 1,34047 1. 67518 2,64547 4,157
20 3. 00465 3. 00931 3. 02328 3. 04656 3.09312 3.23277 3.46544 3.93043 5.32264 7.633
5.00432 5,00865 5,02163 5.04328 5,08658 5,21657 5,43357 5.86882 7.18462 9.409
1.00156 1,00313 1.00784 1, 01569 1,03138 1,07840 1.15667 1,31275 1.77748 2,5401
50 3.00193 3. 00387 3.00968 3.01937 3.03874 3.04916 3.19371 3.38740 3.96837 4,9362
5.,00180 5,00361 5, 00904 5,01808 5,03617 5,04638 5.18094 5,36202 5.90604 6, 8154
1.00084 1.00168 1.00420 1.00841 1.01682 1.04204 1.08406 1. 16803 1.41938 1.8364
100 3. 00098 3. 00200 3.00492 3.00983 3.01966 3. 04916 3.09832 3.19663 3.4915 3. 9831
5.00093 5,00185 5, 00464 5. 00928 5.01855 5,04638 5.09276 5.185654 5.4639 5,928
where by the Givens— Householder method. Then we increase
N g ¢ N to 20, compute the eigenvalues and compare them
A= = € =F=. with those obtained from the 10 X10 matrix, If the
T I+ TV VTE

The form (23) is particularly convenient for small g
and large A, since 0<1, <1 and g, <g for any positive
A. In this case, perturbation methods near g=0 can be
conveniently applied since A, <1,

In the line of variational method used in this paper,

the matrix elements have been calculated by using

Gauss—Laguerre quadrature for small g and for the
whole range of values of A given in the next section.

4.0

35

Alternatively, one can as well develop a recursive pro-
cedure in a manner similar to the one presented in the
last section. The eigenvalues obtained thereafter agree
fairly well with those obtained from the matrices gen-
erated by the methods given in Sec. 3 [it may be em-
phasized that the eigenvalues ¢, are related to ¢, those
of the original problem (1), by e=(1+21)!/%,]. the re-
sults are presented in Sec. 4.

4. NUMERICAL RESULTS

Once the matrix elements are computed to generate
the representation matrices of adequate size, the ap-
proximate eigenvalues can be computed from the cor-
responding N XN principal minors using the standard
Givens—Householder algorithm and studying the con-
vergences of these eigenvalues as N increases. This
procedure has been already explained in Sec. 1. We
start with N=10, compute the first three eigenvalues
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o

FIG. 1. The ground state energy of the harmonic oscillator
with the added interaction Ax2/(1 ch,«'z) as a function of g for
different parametric values of A,
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agreement is up to three decimal places, we stop.
Otherwise, continue the process by increasing N by a
step of 10, until the desired accuracies (agreement to
about three decimal places) are obtained. In this way,
the first three eigenvalues for a range of values of 1
and g have been obtained from the matrices as de-
scribed in Secs., 2 and 3. The results are presented
in Table I.

A plot of the ground state energy against g for certain
fixed values of X is shown in Fig. 1. Similar plots also
hold for the higher energy levels. As is
expected, the eigenvalues decrease steadily with in-
creasing g and fixed X and approach the eigenvalues
(2n—1) (n=1,2, +++) of the harmonic oscillator asymp-
totically for large g. Finally, we note that the size N
of the matrix needed to find the above eigenvalues has
been well within 100, whereas for small g (i.e., g
=0.1, 0.5, 1) good approximations have been obtained
by using only 30 x30 matrices.
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Average force and force correlation formulas for

momentum transfer cross section
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Gerjuoy has related the momentum transfer cross section to the average force. The force correlation
function formula of Rousseau, Stoddart, and March is here shown to be transformable into Gerjouy’s

result for a spherically symmetrical scatterer.

Gerjuoy! considered the scattering of a particle by a
potential V(r), which need not be spherically symmetri-
cal. In terms of the scattering solutions § of the
Schrodinger equation

-1 2
=2 g2 — W= 1
(Zm V(r) E) b=0, (1)
he calculated the momentum transfer cross section as
1 av
= * ', 2
0i=3F JEV S @)

which we shall refer to as the average force formula.

In the different context of the electrical resistivity of
a metal with scattering centers present, Rousseau
et al.? have expressed the same weighted cross section
appropriate to the momentum transfer associated with
resistivity in terms of a force correlation function.
Stripped of unimportant multiplying factors, this is

Vi) aVir,) 2
—81',—1 ° _9_1‘2—2 JO(I‘I, rz)’

zﬁirldrz £, (3)

F= [ar,ar,

where o(r,, r,) is the energy derivative of the Dirac
density matrix. In Eq. (3), we note that (a) we have
already specialized to the case this note treats, a
spherical potential V(»), and (b) ¢ is to be evaluated at
the Fermi energy Ef:ki/Z, where all the scattering
takes place.

The manipulation of the force correlation function
below now follows earlier work by the writer?; at the
time that work was done the result of Gerjuoy was not
known to him. First one utilizes the central field form
of ¢ as given by March and Murray*

a(r,, rz):Zl) (2i+ 1) o,(r,, v,) P,(cosy), (4)

¥ being the angle between r; and r,. Performing the
angular integration implied in Eq. (3) the result is®

/o- fsinydy:‘lg,llo,_l(rl, r) o vy, 7,) Ery 5,
(5)

But now®™®

01(7’1’ ¥y} Rz("l) R;(”z)y (6)

where R, is the radial wavefunction for potential V(r)
at E=E, for the /th partial wave.

As Gerjuoy' and independently Gaspari and Gyorffy’
have shown, with suitable normalization
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® v )
/(: dwsz,_l(V)—a?R,(af):sm(é,_1 -5), (M

where 6, are the phase shifts at energy E,. Hence one
obtains

F=const?, lfdr V)
1=1

R, ,(») R,(»)sin(5,, - 5,).
(8)

Let us turn finally to the average force formula (1). For
a spherical potential, the scattering solution ¥ takes the
form

1

y=

Z; (271 +1)i' exp(i6,) P,(cosb) R (7, k) (9)

Ry
at energy E=E,=£k%/2m Substituting this into Eq. (2),
Gerjuoy' shows that, apart from constants®

oV
x« 27
JarurZ

TooLdAv 2
:const[ drrz—gz (I+1R,R,, sin(5, -5,,,)
o]

» (10)

which, noting that the summation now ranges from /=0,
is trivially different from Eq. (8).

In summary, the average force and the force corre-
lation formula are quite equivalent for spherical scat-
terers. In practical applications, formula (3) has the
merit that if one substitutes o= o0,, its free electron
limit, one immediately obtains the Born approximation
result, Evidently, in the average force formula (2),
substituting for i as a plane wave would be inadequate,
leading to zero. But Gerjuoy points out that his formula
may have merit for treating the scattering of plane
waves off nonspherical potentials. One example which
comes to mind, in the present context, is conduction
electron scattering off two vacancies in association, but
it is not our purpose here to go into any further detail
on that possible application. ®
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SR, Harris, J. Phys. C 5, L56 (1972).

'G.D. Gaspari and B, L. Gyorffy, Phys. Rev. Lett. 28, 801
(1972),

®Inclusion of constants is tedious but straightforward. When it
is done, the average force and force correlation formulas
are identical, for spherical scatterers treated in this note.
9Agaln one would have to transcend the plane wave approxima-
tion to ¥ when using Eq. (2) in this example.
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Complex pp waves and the nonlinear graviton construction
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We show how to construct all of the complex pp waves using the nonlinear graviton construction of

Penrose.

INTRODUCTION

Several years ago, Penrose' showed that one could
construct generic, half-flat solutions of the complex
Einstein equations through the use of deformation
theory. His idea is to deform the complex structure
of a neighborhood of a projective line in P,(C). The
original undeformed neighborhood contains a four-com-
plex-parameter family of lines which are identified with
the points of an open subset of complex Minkowski
space, For small deformations, Kodaira’s theorems?®?*
guarantee the continued existence of a four-parameter
family of “lines” (i.e., compact holomorphic curves)
in the deformed space; these are identified as the points
of a new complex manifold g . A holomorphic metric is
then introduced on(; in a natural way and the resulting
complex spacetime is shown to be half-flat, that is, its
Ricci tensor vanishes and its conformal curvature ten-
sor is anti-self-dual.

While it is a relatively straightforward matter to
construct deformations, the task of finding the four-
parameter family of lines in the deformed space is
usually very difficult. Because of this, only a few iso-
lated solutions have actually been explicitly constructed,
only one of which, to our knowledge, has appeared in
print,* The purpose of this paper is to show that the
simplest half-flat spacetimes, known as complex pp
waves or Plebanski plane waves,® can all be obtained
explicitly using the Penrose construction.

1. THE NONLINEAR GRAVITON CONSTRUCTION

In this section we summarize the Penrose construc-
tion. For more detajls, in particular for the proof that
¢ is half-flat, we refer the reader to Penrose’s original
article.!'

Denote a point of C* - (0) (a twistor) by Z¢=(w*, 7,.),
and let [w?, 7, | denote the corresponding point in P,(C).
If x#4 is any point in complex Minkowski space, CM,
we may associate with it the projective line L(x):
=ix*4 7,., 7, 11,15 P(O)}. If W is a connected open
neighborhood of x in CM, the set PT(W): ={L(y)|y = W}
is a connected open neighborhood of L(x) in P,(C). In
this paper we shall consider only the case W=CM and
we set PT:=PT(CM). Notice that PT is just P,(C) with
one projective line removed (namely, all points of the

2024 J. Math. Phys. 19(10), October 1978

0022-2488/78/1910-2024$1.00

form [w#, 0]). T is the corresponding set of points in
C*~ (0), Then we have:

(a) PT is a holomorphic fiber space over P {C) with
projection [w?, 7, ]— |74 ] Similarly we have a fiber
space T —C? = (0) given by (w?, 74 )~ 74 and the follow-
ing diagram commutes.

T

PT

1

C*-(0)

(b} The points of CM are in 1—1 correspondence with
the global holomorphic cross sections of PT — P(C):
Given x#4', define a section by [7,, |~ [ix**' 7, 7, ]. Al-
ternately points of CM may be put in correspondence
with global holomorphic cross sections of T —~ Ct-(0)
which are homogeneous of degree 1 in m,..

P{C)

(c) The conformal structure of CM is obtained by ob-
serving that points » and v in CM are null-separated iff
L(v) and L(v) intersect. If v=x+ Ax and if w*(Ax, 7,.)
is the section of T~ C? — (0) corresponding to Ax, then
w#(Ax, 7,,)=0 for some 7,, [and hence for A7, for
A2 C~(0)]. Thus null vectors in CM correspond to
global holomorphic sections of T — C* — (0) which van-
ish somewhere. In order to pin down the conformal
factor, one makes use of the 2-form dw,» dw®=p.
This will be considered in more detail later,

If we let /) (resp. /) be the subset of C* ~(0) given
by 7y #0 (resp. m,. #0), then we get a decomposition of
T as the union//U(/, where {/={(w*, 7,.)| 74 U} and
=@, 7,17, =0 We may view T as being formed
by glueing together // and {/ by the trivial equations
@A =t Ta=7,.. To deform 7, we consider a one-
parameter family of patchings of the form

= Aw, T, A, T Tay (2)

satisfying

;/"A(QU«" a, A)= (Y./:A((-U’ Ty ‘\)y a C _(O)y

(3)

k/AA('u,, 7, 0) = 0t
Here A ranges over a neighborhood B of 07 C and the
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functions /4 are holomorphic in C*x(4n/J)xB. For
each fixed A € B the patching (2) gives a fiber space

7 (x)—~C? - (0) (a deformed twistor space). Since the
transition functions are homogeneous of degree 1, the
identification (w*; 7,.)~ (aw?, a7,.), o € C-(0), is con-
sistent over /) N /) and gives rise to a deformed projec-
tive twistor space P7(A) — P,(C). An important aspect of
these deformed twistor spaces is the existence of a pre-
ferred 2-form on the fibers of 7 (A) -~ C? — (0); the trans-
formations (2) are required to satisfy d&°A do*

=dw’A dw' + (terms involving dm, ).

Kodaira’s stability theorem? ensures that for ’)\l
sufficiently small, P/(x)— P,(C) still has a global holo-
morphic section. His completeness theorem® then guar-
antees the existence of a four-parameter family of glo-
bal holomorphic sections of P/ (x}) = P,(C). So for A
fixed and sufficiently small we have an open set & < C*
and for each z < § a global holomorphic section,

L,(z), of P7T(x)— P,(C), distinct 2’s giving rise to
distinét sections. Each such L,(2) pulls back to a global
holomorphic section of 7 (1) — C?~ (0) which is homo-
geneous of degree 1. This section, / ,(z), is repre-
sented by a pair {w*(z, 7, A), &*(z, n, )} satisfying the
transition relation (2). Each function w?(z, 7, 1),

&*(z, 7, 2) is holomorphic on its domain and homogen-
neous of degree 1 in 7,,.

Henceforth we shall consider a fixed value of A and
shall omit A from the notation.

Now let z,§ and let 6z = £(3/92%)(z,) be tangent

toG at z,. Define £*(z, n): = t*(3w*/32%)(z,, 7) and
EA(z,, m):= £2(004 /32%)(2,, 7). Then

£A(z,, m) = (3F4/ 3B Nw( 24,m), MEB(2,, 7). (4)
Thus the pair {£4, g"} is a section of the normal bundle

of / (z,) in 7. Intunitively the situation is as follows: / (z,)
is a section of 7 — C%=(0) which we view as a submani-

fold of 7. We write (to first order) / (z, + 62): ={w*(z,, 7)

+‘§A(Z()5 77)’ (:’A(ZOJ 77-)+ gA(ZO’ ﬂ)}

That is, we have a “nearby” section / (z,+ 6z) and the
“difference” between the two is a section of the normal
bundle of / (z,)(see Fig. 1). It follows from Kodaira’s
completeness theorem?® that the map 6z = £5(5/92%) (z,)

— £(z,, 7) is an isomorphism from T, onto the space
of global holomorphic sections of the normal bundle of
[ (z,) which are homogeneous of degree 1 in 7, .

The conformal metric on( is obtained by defining
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£.eT, to be null if and only if £(z, 7) has a zero at
some 7 (and hence for any nonzero multiple of 7). See
(c) above.

In order to define the actual metric ong we use the
2-form, p=¢,,dw? Adw? =€, do* Ado® (mod dny,.),
which is well defined on the fibers of 7. If £€ T ¢
the relation (4) shows that we may regard £(z, 7) as
a vector field along / (z) which is everywhere tangent
to the fibers. Suppose ¢ and 7 are null vectors at z and
that £(z, 7), n{z, n) vanish at @,., B,. respectively.
Then Penrose defines

g, (&, m)i= (g B (g, n)/{az 7% )(Bg. 7%°). (5)
The right side of (5) is symmetric in (¢, 7). As a function
of n,,, it is homogeneous of degree 0, and holomorphic
on C?-(0). Thus it is constant and so g, (&, n) is a well-
defined complex number.

2. CONSTRUCTION OF THE COMPLEX pp WAVES
We choose the patching (2) to have the form

W’ =0,
@' =+ (W, 7,.), (6)
Fa =T,

where % is homogeneous of degree 1 and holomorphic

on Cx{f) NY). We set A=1 in what follows. We shall
write down all global holomorphic sections of the bundle
7 — C?—(0) obtained using (6) which are also homogeneous
of degree 1 in 7,,. Such a section is given by a pair

{w (7), &* (r)} satisfying (6) with w*(r), &% (7) homoge-
neous of degree 1 and holomorphic in/), /) respectively.
Thus w°(1)=@°%(7), so these give a holomorphic function
on €2-(0), homogeneous of degree 1. Therefore, there
exist 4, {e C, constants, such that

@ () = (@) = umy, + L, ™

wi(r) and o' (7)) are related as follows:

o) =

Hm o), T), 7EDN). (8)
For fixed » and &, Alum, +£m.,T,, 7,.) is a holomorphic
function /) N/). To construct a section of our bundle, we
must express this function as a difference &' (7)) - w*(n)
where w'(&') is holomorphic in /)(/)) and homogeneous of
degree 1, Each distinct way of splitting # will give a pair
{&*, w'} and hence a section. We claim that for each pair
(u, ¢) there is a two complex parameter family of split-
tings, Thus we get a four-parameter family of sections
of 7 — C*(0) as desired,

To see this, let £ #0. Then setting (7,., 7,)=(1/¢, 1)
in (8),

EN, D=0 A, £) F e hlu+ £L, 1, £) (8"

Let alg):=hlu+£¢, 1, £) and expand h(¢) in a Laurent
series, h= 2. .b,(u, O)&" Put w'(l, &) =2, a,t"
This series is convergent for all £ € C, and £w'(1, £)
+ £'h(t) is to be entire in ¢!, We conclude that in the
series expansion of the right side of (8" all positive
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powers of £ disappear. We conclude a,=- b, for n>2,
while {:=a, and v:=aqa, are free parameters, Thus in the
first chart the sections are given by

o ~
w (u’ v, &, §, TTA,)ZMTTO, +§ﬂ'1,,

W, v, £, T, Ta) = LM + 0T, - Eb (u, ¢ (( )?,_1 (9)
0’
and in the second chart by
Plu, v, £, T, T ) =umy, + 1,
5 ' - e i (ﬂOI)rnl .
(”, v, &, E; ﬂA')"gWO' +om, +n— lb-,,(ll, g) (ﬂ. )n (9)
= ¥

Computing the metric: Consider (u, v, ¢, ) as co-
ordinates of a point in( . Let (du, dv, d¢, df) be com-
ponents of a tangent vector at (u, v, ¢, ¢). According to
the discussion in Sec. 1, we get a section of the normal
bundle to the section of 7 labelled by (x, v, ¢, ¢) by
writing, in un-hatted coordinates,

V=7, du + m, d¢

V=1 df + 7, dv

-3 <9ab7 ut dC)("(%

Assume d¢+0. Then, for a null vector, (V°(n,.),
VH{m,.))=(0, 0) for some T, . We must in fact have
a zero at (., m.) = (- d¢, du). But then V*=0 gives

(10)

~ © ab (du)nu
0=-— -— —n 277 (1=t
dedt + dudv 22 S (@ (-1)
ob, (du)" ol
; @y =V
0 = dudy - dedt + %b_g hi?
= n ob,.,, (du)™
g’( 1)<8u T Tor @yt
But, recalling that hlu + £¢, 1, £) = 2. b, (u, O£,

we conclude 8b,/du=2b,, /0. Thus the power series
vanishes and the conformal metric is given by

dszzx(dudv dgcf+ ag ) (11)

where « is an arbitrary nonzero holomorphic function.
We now show that the actual metric on g as defined by
Penrose is obtained by taking « =2, Let

.0 ob, @ .0
X'"—au_‘é?av’ Y‘_%" (12)
X and Y define sections as in (10). For X we have
X=my,
(13)
, 0d (m.)"
X' = 2 = (u, _¢)n—-l"
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For Y we have

Y°=0, Y'=n,.. (14)
The section X* vanishes at »,, = (0, 1) while Y4 vanishes
at 7,, =(1, 0). That X#(0, 1)=0 is not evident in (13),
but one must remember “unhatted” coordinates are not
valid for 7, =0.

Let x,, =(0, 1), y,, = (1, 0). Now x* =(1, 0), y*

=(0, — 1), Then the Penrose inner product of X and Y
is
Xy W(XA, YA
X, Y A__—T—
g( ’ ) (XAJT )(‘A ) 7’
X v =<1, xam=—70,, y.r =7,
and

wXA(m), YA =X2(m Y (r) - XY m) =7, 7, .

So g(X, Y)=(-1)m, 7,/ 74 r, =1. On the other hand,
if we simply substitute X and Y into (11), to obtain
gX, Y)=1 we find that we must take « -—2 as asserted,

Now let f(u, £) be any entire function on C?, We
claim we can choose k so that 8b,(u, £)/35=F, ). If
so, then we will have generated all metrics of the form

ds® = dudv — dgdg + f(u, )du®. (15)
It is enough to show we can choose i so as to make

by(u, £)=glu, t), where g is a given entire function.
Write

g(“: g) = n,mZ,O

where the series converges everywhere. Define

ms.n
a, ug",

¢)(x’y E —a’“——xy

n,m=0 ("“'")

Then ¢ is an entire function of x, y. We then write,

4] ¢} 2
h(wo, Tory 7T1:)Z = d)(&_ w_) (ﬂ'y) .

b
T~ Ty ) Ty

Clearly 4 is holomorphic on CX (/) ™ [)), and & is homo-
geneous of degree 1:

g6, 1, =0 1L, "—:-Qt*)s

_ a,, {u+geym
"IEO (m;n) 5"-2 b

(u+£§r§)m+n _ men (m;,,)”m*rkgkgk'n*z
so when everything is expanded in powers of ¢ for fixed
u and ¢ the coefficient of £ is 25, o0, w"¢"=g(u, &) as
desired. For the metric (15) one can directly show that
the Ricci tensor vanishes; whether the Weyl tensor is
self-dual or anti-self-dual depends on the choice of
complex volume element ¢€,,.,. There is on( a natural
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choice of ¢ due to the existence of a natural spinor struc-
ture on (. In the coordinates (z*)=(u,v, ¢, ) used

above, ¢ is specified by ¢,,, =- . With this choice the

space is right-flat, i.e., *C, ;= —iC,, -

ACKNOWLEDGMENT

One of us (D. L.) is grateful to K,P. Tod for an ex-

2027 J. Math. Phys., Vol. 19, No. 10, October 1978

planation of some of the details of Penrose’s
construction,

IR, Penrose, Gen. Rel. Grav. 7, 31 (1976).
2K, Kodaira, Am. J. Math, 85, 79 (1963).
3K. Kodaira, Ann, Math, 75, 146 (1962).

4E, T. Newman, J.R. Porter, and K. P, Tod, Preprint.

5J.F. Plebahski, J. Math, Phys. 18, 2396 (1975).

Curtis,Lerner, and Miller

2027



On the computation formulas of the SO(n-1,1)
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The formulas for computing the boost matrix elements are found for all classes of the unitary irreducible
representations of SO(n —1,1) by defining the invariant scalar product in the space consisting of the D
functions of SO(n — 1) and assuming that functions with some property exist for the complementary series.
The normalization constants of the bases are completely determined by requiring that the boost matrix
elements in the finite transformations agree with those obtained by the method of the infinitesimal

operators in the infinitesimal transformations.

1. INTRODUCTION

The representation theory of SO(r) is important for
mathematical physics and used in many branches of
physics. The matrix elements of the infinitesimal gen-
erators of the representation of SO(n) have been known
since Gel’fand and Tsetlin, ' whose bases are classi-
fied by the group chain SO(#) 2SO(n - 1) > - -+ D>S0(2).
The D matrix elements? are given in terms of the raising
and the lowering operators of Pang and Hecht® but in
general it is hard to give explicit expressions and study
their properties from these. On the other hand, the
formulas®*=® for computing the d matrix elements is
given in a form with a single integral, over a compact
domain, of two matrix elements of SO(n-1) and a mul-
tiplier. This formula is convenient for computing the
matrix elements explicitly and examining their
properties.

The representation theory of SO(n -1, 1) is also im-
portant for mathematical physics and for clarifying the
unitary representations of a noncompact group. The
classification of the unitary irreducible representations
(UIR’s) of SO(rn -1, 1) is made by means of the infini-
tesimal method by many authors.™° For the SO(n-1,1)
finite transformations, the computation formula for the
matrix elements of the UIR is known only for the princi-
pal series*® and seems not to be known for many other
classes, which will be hereafter called “complementary
series, ” except for low n cases,!®!!

In the case of the principal series, the scalar product
of two functions in the representation space is defined
by the integral of the product of these functions, one of
which is taken to be complex conjugate, and then the
computation formula is obtained. For the complementary
series, we must find the scalar product relative to which
the representations become unitary. Many possibilities
are considered to define the scalar product. However,
in the case of the Lorentz group (z=4), we know the
scalar product!’ such that the representation is unitary
for the complementary series. This suggests that even
in the general case a scalar product can be defined in a
similar way but will contain a function by which the
complementary series are classified. If we assume the
existence of such a function subjected to some condition,
it is possible to define the scalar product relative to
which the representations of SO(n -1, 1) is unitary
and to construct the computation formulas for the ma-
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trix elements of the UIR’s. The scalar product defined
in this article is to be considered as a generalization
of that in Ref. 11,

In Sec. 2, we summarize the results for the groups
SO(@) and SO(» — 1,1). In Sec. 3, it is shown that we can
construct the computation formulas for the matrix ele-
ments of the UIR’s of SO(n ~1, 1) by defining the scalar
product in the space of the D functions of SOz -1), In
Sec. 4, it is shown that the complex numbers p, intro-
duced in the infinitesimal and finite methods denote the
same one, In Sec. 5, the matrix elements for »=3 and
4 are given as special cases of our formulas.

2. GROUPS SO (7} AND SO {n-1, 1)

In this section, the results for the compact and non-
compact groups SO(n) and SO(n -1, 1) are summa
rized.' %° Hereafter, we use the same symbol SO{x)
[SO(n — 1, 1)] for both the group SO(n) [SO(r -1, 1)] and
its twofold covering group.

The generators Dy, (=~ D,;) of the representation of
S0(n) obey the commutation relations

[D,-k, Dlm] :i(olekm +6,,D

Em i1 T 6J'mD)zl - leDJ'm)’ (2’ 1)
where the D,’s are Hermitian, The corresponding gen-
erators fo SO(n -1, 1) satisfy the relations (2.1) in
which we replace the Kronecker &’s by the metric ten-
sor g’s which take the values, g,, =g, =c"=g, .1

:"gnn:]‘ and gjkzo fOI‘j#k.

We introduce the Gel’fand and Tsetlin bases® of the
UIR’s of SO(n) which are classified by the canonical
chain of subgroups SO(n) > SO -1)> -+-280(2). They
are given by

1950 = Ry Xty oo 2.2)
where X; stands for the row (m;;, M 5, ..., Myg;70)), all
A, are written in a row, and [j/2] is the largest integral
part of j/2. The UIR of SO(n) is characterized by A,.

The numbers m ,, are simultaneously integers or half-
integers and are restricted by the conditions

Migjaq or S Mgy  SMg,y, @=1,2,...,5~1),
Mojin S Mgy S (6=2,3,...,5=1),
(2.3)
© 1978 American Institute of Physics 2028



[mzj j‘s Myjy jur S Mg ja1s
Ima; ;1S Mg 5o

The action of the generators D, ,, (1 <j<n-1)on
the bases (2.2) is given by!

Dy oper Imij> :gA(mzk J')‘WIZk j+1>
-;A(mma iT

5
Doy zk‘mij>zj=lB(n22k-l j)’mztzal 1+1>

1) |my, ;- 1), (2.4a)

k=1
_jZ;/B(mzkl s=1) ‘ Moy 5= 1)+ Cyy ‘ M)

{2.4b)

In these equations, the matrix elements A, B, and C
are given by

; B=1
Almy, 1)=——2§{i§1[(12k-1 (=3P =l ;+3)]

| (P A Y e

XA = B M = (o, + D71, (2052)
Blngp ) == il T Brce o~ B LBy (= Bos )2
%@dﬂ@ljﬂéﬁw,ﬁmﬂ
X (oo s~ 17 = By P2, (2.5b)
o= Tlasee ¢ Doy il Tlapn (a5~ DT, (2. 5¢)

where the prime on I1" means the product of factors with
i+j and 7,, is defined by

lp=my+[G+1)/2]~

Similarly, the bases for SO(rn -1, 1) are given by
the canonical chain SO(n -1, 1)28O0(n -1)> -+ SO(2)* 2
and can be written in the form (2. 2) in which all the
numbers m , except for m,, (=p,) are subject to the
conditions (2.3) (note that for some classes other
conditions will be imposed®?®). The UIR’s of SO(z~1,1)
are classified by the values of the numbers m,; (j= 2)
and the complex number p, which will also be written
as p,=(2-n)/2+0,+4v,, ¢,and v, real, The classi-
fication of the UIR’s of SO(n —1, 1) can be tabulated, "~*°
but we do not do that here.

(2.6)

The action of the generators D; ;,{(1<j<n-2)on
the bases of SO(n -1, 1) and their matrix elements are
the same as in SO(n), i.e., they are given by (2.4) and
(2.5). The action of D,_, , on the bases of SO(r -1, 1) is
given by the same form as (2. 4) and their matrix ele-
ments A, B, and C are obtained from (2,5) by the fol-
lowing replacements:
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A, B, C—~ - iA, ~iB, -iC,

ly~%~—0,+iv, in (2.5a) for n odd, 2.7

Iy —0,+iv, in (2.5b), (2.5c) for » even,

and the other quantities are not changed. It is noted
that the matrix elements A and B contain o, +iv, as
squared, but C depends linearly on o, +iv and{ .,

(=maq n/2).

An element of SO(r) can be parametrized by the
Euler angles as follows®*%;

g g(n-l)s
S ~{ﬂf§3’.’ O e s (6, )6, o, 2.8)
g 2):[1(?(921);

where

<f. <
O\ij ,

k=1,2,...,j-2,

O0<¢,, <21, j=2,3,...,n,

73

and ¢{(6) is a rotation through 6 in the (j, %) plane and
can be expressed with a nX#n matrix whose elements
are given as follows:

8 (0 gy == (t¥).,(6)),., ,=siné,
(t;p;-L aq = (tép;-l )q-l 1= cosé, 2.9)

(t#_.(6)),, =0b,, for », s besides the above cases.

It is noted that the following relations hold from (2. 8)
and (2.9):

(g(n)'g(n)q )ﬂn — COS9,',1 coS 9"1
+sinf}, sing, (g1 gn-t-1) |,
(g™),, =cosé,,, (2.10)

and the bracket term on the right-hand side does not
depend on 6, and 6},

Similarly, an element of SOz -1, 1) is parametrized
y (2.8) in which ¢{*)_ (6,,) is replaced by > (¢),

n n=1

Where ot} (¢) is the boost in the (1 —1)th direction

nn-

through ¢ (0= ¢ <«) and has elements

CED (€, por = (8 _(E)),., .= - sinhg,

(bfr(lnnll (g))n-l n=1—" (btn n-l(g))nn = COShg’ (2" 11)

() (), =6,, for », s besides the above cases,
Another important parametrization of any element

of SO(n -1, 1) is due to Iwasawa,'® i.e., the element of

SO(n -1, 1) can be written uniquely as g™ =n(¢)aln)k({8}),

that is,
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1. ¢ £N/1 0 0 0

{6}

0 coshy — sinhp 0

0 —sinhpy coshn/ \0 0 1
(2.12)

where: k({6}) (=g"')SS0O(n-1) is the maximal compact
subgroup of SO(n -1, 1) parametrized as in (2. 8); aly)
[=8tfm ()] A, the Abelian subgroup of SO(n -1, 1);

n(¢) € N, the nilpotent subgroup of SO(n -1, 1), where
£ is the column vector (£,, £,y ..., &,.0), & its trans-
pose, and E= (g} ++--+£2_,)/2, By considering the
transformation induced by

g(n) ¢ g(n)' —g(")(l(C) n ')a(’n’)k({e'}), (2. 13)
we obtain
cosél, = cosd,_, cosh¢ — sinhg
n=11" 3 ’
cosh¢ - cos#d,_,, sinh¢ 2.14)

Onr 1=0n0 5 (G#1),
expn’ =expn(cosh¢ — cosf,_, ,sinhg),

The invariant measure of SO(») is given as follows:
av,=dv,..,ds,, dv,=db,,

N (2.15)
ds,= jI;ll{(sm@,,j)”'f‘1 ds, .},

where dS, is the surface element of a sphere in an
n-dimensional space. The volume V, of SO(») is given
by V,=V,_,27"/2/T(n/2) and V,=27.

The representation D matrix of SO(n) corresponding
to the rotation (2.8) is given by*5¢

D(g'") = D({6,}) = D({6,.. H(S,) (2.16)

where

H(Sn) ={ﬁInRJ j-l(en n-j+1)}R31 (en n-2) Rlz(gn n-l)’
and the notation {6,}=(6,,,-.., 6, ,,) Will also be used
instead of g in order to show the arguments explicitly
and R, ;, (6) is the representation matrix corresponding
to the rotation ¢, ;.,(6). The representation D matrix
elements of SO(rn) are defined through

DR 8D = 0 D) Py 217)
where the notations such as {,,_;}= (.1, Ny, -+.,2;) are
used, The corresponding D matrix of SO(n-1, 1) is

obtained from (2.16) by substituting R? ,_,(¢) for R, ,,(6),

where R _l(g) is the representation matrix correspond-
ing to %, ‘ ),(£), and its matrix elements are defined by

sandwmhmg the D matrix between the bases of SO(n-1,1).

It, therefore, follows that in order to calculate the D
matrix elements it is sufficient for us to know the d
matrix elements (the boost matrix elements) provided
that those of SO(n - 1) are known. The d matrix elements
of SO(n) and the boost matrix elements of SO(n -1, 1)
are defined as follows:
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diz:’: (An_z)k,,_l (6) = <>\n)\r,1-l{)\n-2} l Rn n=1 (0) ‘ )\"7\ n-l{ln-z}%
(2.18)

b J{An=2, on)
a1l R T, 1

) = <An-2’ Pr X;-l{xn-z} ‘ Rﬁ n=1

x(¢) IAn-2’ Pns 7\"-1{>‘n-2}>: (2.19)

where A,_, stands for (m

n2y Mpzs o ooy mnln/2])'

The orthogonality and the completeness relations for
the D matrix elements of SO(n) are given as follows® 4

J

{(An) (n) (A3) (m)
Vo Dem o 1@ )DGEL oy, 8

SO (n)
=010ty 1 Va /N(A), (2.20a)
N@y,) DO (D o)
%) n n,..xz)%n;.-uD“”'lm @) "-1”’5--1)@"
=0 (")({9"}, {0;})7 (2, 20b)

where 0,), stands for a product of Kronecker 8’s in
the individual indices and N(x,) is the dimension of the
UIR of SO(n).* The expression for §,(:,-) is given by

6(")({9 }’ {9 }) 8 tn- 1)({9n-1}! {9"_1}){ U (sind, )]'"'16(

6(2) {62}’ {9 })“‘ )'

The following relations are obtained from (2.20) by
taking into account (2.16), (2.17), and (2. 18)%:

_enj)}r
(2.21)

(S»)

n-)_”’»n-l)

)
2 fsndSnH(;‘:ﬂ)man(S JHG

(ln-z)

VnN(An 1)

_b(x,,_ll().,,_l}éx,,x V N( ) (2022)

2LINQ,. z)f dgsmn-zf)d? :(xn oy O )d, 1 (x"_zn (9)

Ana2

\/'77'1"((11 - 1)/2)N()&n_1)N()\;,.1)

5 , (2.23)

=0, ,,

ntn T(n/2)N(x

ZN(K,,) dh")(x

ln-l ne2

(n)
)x;_l(e) D) 2 ’*5-1(9,)

8(8 = V7 T({n ~ 1)/2N (. )NO,,)
(sm())”‘fl"(n 2)N(\,._,)

(2.24)

Ap-zMpaz

3. COMPUTATION FORMULAS FOR BOOST MATRIX
ELEMENTS

In this section, the formulas for computing the boost
matrix elements are constructed for all classes of the
UIR’s of SO(n - 1, 1) by defining the invariant scalar
product in the space of the representation matrix ele-
ments of SO(n —1). We discuss the cases of the princi-
pal and the complementary series separately.

A. Principal series

The formula for the boost matrix elements is given
in terms of the integral of the d matrix elements of
SO(n - 1) and that for the d matrix elements is obtained
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by analytic continuation,*® We explain briefly the
derivation of the formula because some results are
needed for the derivation of the formulas for the com-
plementary series.

We consider a linear space consisting of the D matrix
elements of the UIR of SO{(n —1) and define the scalar
product in the space as follows:

an-l ':I"l(g("“1 ))éz(g("-l )), (3- 1)

<‘I>1, d>2>: fSO(n-l)
where ¢, and ¢, belong to the space. The orthogonal
bases are given by

- An=1 -
B (L (g =V R Vo Noyid ) DR (6,

(3.2)

where {A,_,} denotes (A, _,, A mer o0 A;) in which A,
is defined in (2.19) and A, (2< j < - 3) stand for some
fixed (m 5, «.v, M52y The magmtude of the constant
N(p,; A,.,) is determined by the normalization of the
base (3.2). That is, we obtain from (2.2a)

IN(p; 2,0 =1 (3.3)
It is noted that we must take into account the phase
factor in (8. 3) as shown below.

If we consider (2.13) and (2.14), it is expected that
the action of the representation operator R? ,_,(¢), which
corresponds to the boost °¢")_ (£), on the bases (3.2)

can be put into the following form:

L]
Rn n-1

( )‘i’f;«\,ﬁ'ﬁ’ ﬁn)(g<n—1))
=(cosh¢ - cosf,_; ;sinh{)’n

xq’((t'-xz}'p")({en-z}’ (Bres 15 Oner 25 °*% s Bpet ma2))s

(3.4)
where

_cosb,__, ,coshf — sinh¢

s6;,
co cosh¢-cosé,_, ,sinhz *

n=1 17"

Then it is easy to show that the condition of the repre-
sentation is satisfied for any complex number p,, i.e.,

n n- 1(§1 + §2)d>“‘n.2‘-9 )((g(n-l)

n n-l(gl) n n-l(§2)¢ (A,‘_Z,D")(g(n-l)) (3. 5)
However, the unitarity condition relative to the scalar
product (3.1) is satisfied only for p,=(2 - n)/2 +iv,,
v, real, i.e.
<Rn n-l )d)((j)};’:f; o n n-1(§)‘b (A"'z)'p")>

(3.6)

— (Apu2,Pp)
—<‘I’[A;,"_1]' "

Y ﬁnn_.lz]. on)y,

It, therefore, follows that the unitary representation
of SO(n -1, 1) is realized only for p,= (2 - n)/2 +iv,
and this is the principal series of the UIR. %5
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The boost matrix elements of the representation are
calculated through

(A )
<¢’ "'(ziv"z),

3.7

b (A
dn-’i(zlnnz}gc )

ApoosVy)
Rn ne 1( )‘1’{()&""_"12) n >

Making use of the relations (2.8), (2.17),
(2.22), we reduce (3.7) to the form

b jlhnmz vy _ T(n-1)/2) NOL_JNOY)
Mot M2y T (= 2)/2) N(A, )N (A, )

(2.20a), and

N, x,)
xN(V )\,1)EN(>\,,E,3

na nel

f desin™6dp) ()
0

X(cosh{ — cos@sinhg )@= /2+iv,

X d()‘n-l )
Apoz2 (An-3)no2

(6", (3.8)

In order to determine the constant N(v;,.;), we

consider the infinitesimal transformation with respect
to g, i' € v

b Az, va)

n- l(xn-Z))‘n-l 6)" A

n=1"n=1

+ 7'§<An-2’ n n-l{kn-z}}Dn n=l1 lAn-23 m {Au=1}>

+ oo,

(2-n)/2+ivy

. . (
(cosh¢ - cosé sinhg) W, din1) L (87)

= df\n-a A ipez () — C{(Z—Z_—E + iy )cosG + smed—(z }

Xd“""l)

PN 3,,‘ﬂ_z(e) + vee,

Substituting these into (3. 8) and taking into account
(2.23), we obtain the relation from the coefficient of ¢,

i<An-2! m n-l{hn-Z,HDn n-l’An-27 n’ {An-x}>

F((n - 1)/2) \/N()\n I)N( n-l)

T JaT(n-2)/2) N(v,,)N(A, ) (3.9)
S i i)
where
iD= TN 0) 40806 €05 6 df T granal6)
Xdy ,,Tzl()x,,_g ) x,,_g( 6),
TR S TN ] 050 S0 s, 0

d
d9 dAn-z()"nas)lnaz(e)

We first consider the case of #» odd. Taking into
account the matrix elements (2.7) with (2.5a), we ob-

tain the relation from (3.9) for X\, = (2,1 yeee, My 415
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+1, m s Ml s nety j2 s

Mper n=1 jelsoe
N2, y)
N(u >\ )
B - 2+iv,+1 s
1/2 %2
Wim oy = v, 0/ 2 = )y + v, +0/2 )]
(3.10)

where I, and I, are some quantities which are independent
of v,. As the maomtude on the left-hand side of (3.10) is

unlty due to (3.3) and the two quantities in the denomina-

tor on the right-hand side are complex conjugate to each

other, we obtain the two cases of the solution for e,

=my,;tland ml ,=m,,, (#7)

n=lj
Case 1:
Ny Ap) (P = 10t /2~ e (3.11)
N ix,.) My iV, +n/2—j
Case 2:
1/2
Ny Ay) o (P 580 +n/2-j (3.12)
N x ) Mgy j= iVt /23

Here ¢ and ¢’ are some constants of the unit ma ynitude
which do not depend on v,. Taking into account he
restrictions (2. 3), we obtain from (3.11) and (¢.12)

for any wm,_,; and m)_,,

N a0
A‘Y(Vn; >\rl1-l)

_ Jireer Doy = vy 0/ 2 = DL Oy + v, +0/2 < §) Lz
Lt Tlmgy s +tiv, +0/2-)T(m), =, +n/2-7)]
(3.13)
for Case 1, and
EV )\',’ 1;_5'[complex conjugate of (3.13)],  (3.14)
n=1

for Case 2. It follows that (3.13) and (3.14) are complex
conjugate to each other up to a phase factor. We may,
therefore, choose one of them without loss of generality
because we can start with (3.2) or its complex conjugate,
and the representations with (A,_,, ¥,) and (A} _,, - v,) are
unitarily equivalent, where A, =My .., My (ury/2)
for nodd and A} , =m0y s oy My (ge2y 2> — Plygya) fOT

»n even. In what follows, we adopt (3.13) which agrees
with that in Ref. 4. Similarly, for neven we can obtain
the same solution as in (3.13). Thus the normalization
constant of (3.2) has been determined up to a phase
factor which is equated to unity without loss of
generality.

As a by-product of the above result, we obtain
useful formulas for the integral containing the d matrix
elements. Substituting (3,13) with ¢=1 into (3.9) and
taking into account the matrix elements (2. 7) with
(2.5), we obtain the following results:

(i) n=2k+1 odd, m_,
for I1+7,

j=m +1and m)_, ,=m,.,

n=1 g

N,
[N,

V7 T -2)/2)
T{(n-1)/2)

INO,,)
N O 7®

=10 Ane1) — _1.
Ape2rna2 2

(3.15)
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[ nk-l{ 2y ‘;)2 _(ln-l J + %)2}
[ (Tt = Ly Nl p = (Lo # D}

) e L\ 1/2
xsgz{(lns -3) = (ln-l it z) } ’

)I(Xn-l, Ape 1)

(A 1,n-1) —
-T = (m! e T

AnuZXn-'z

(3.16)

n=1 ]

(i) n =2F even,

@) m;., j=m,, ;forall j,
2)/2IN(A,INO,,)
1)/2)NX)

(An-lx An-l) VT-T‘F((n—
=2 r((n._

L O L s Lng

rzl

“2 lln-l r(] n-1r = 1)

(3.17)

NP
TA:.—zl'h"'1~( o — 1) {Mnedern)

n-2 n-27‘n-2 ’

(3.18)

(b) mn_, PE My +1 and in =My for l;ej,
IO ) = Vi D((n = 2)/2) N(A,,)NQ,.,)
AR I{(zn-172) JNO\,_ NG

12, k(5 ~ 13,_1 )

[

1/2
_72 11}] ’

2, (A, S DR, - Py Pra e
(3.19)
— T(l’n-l. Ap-1) — (n] pel i )Ik:"_’;l:_';'l) (30 20)

n=2"n=2

In this way, we can give many integral formulas with
respect to the d matrix elements by considering the
higher power in ¢. Their expressions are not given
for they are not needed in the following discussion.

B. Complementary series

We consider the UIR in the space consisting of the
D matrix elements of SO(rn—-1) as in (A). The bases and
the action of the representation RZ,_ (¢) on the bases
are the same as in (A), i.e.,

@2 (g ) = [NO) Vg 2

n-l

x N(g,, AH'I)D&:?_)](An_o)g’(n‘”), (3.21)
Ry ()@ hrec, o) (g (D))
= (coshg ~ cosb,_, , sinhg)u'")”"’"
X &2 (6, ok, Bryss Oosas s Ot no2)),
(3.22)

It is easily seen that the condition of the representation
is satisfied, but the unitarity condition is not satisfied
under the scalar product (3.1) defined at (A). We must,
therefore, find a scalar product under which the
unitarity condition holds. We know the scalar product
for the complementary series of the Lorentz group.!
Contrary to the Lorentz group, we have many classes of
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the UIR’s for the complementary series. This suggests
that there exist some functions by which the UIR’s are
classified in the general case.

By assuming the existence of such functions, we
define a scalar product as follows:

(CI) (An=2,%n)

gy ? e {ir-zon)),
-

(A1}

V ’
S0 (n-1 )d m1 @V

- JSO (n=1) ‘}

l (g(n-l ¥

An=1)71y S );g(n-l)-l)

n-l n=1 ]

(A _ (n=1)’ (Ap-2,0p)( 5(n-1)
><<1>()L;'ﬂ_‘2),"n)(;;r )‘I)(X,,n.lz} n (g Y (3.23)

The quantity {1 - (g "’ g("'“-l),,_l ..1] is considered

to be a generalization of the kernel in the case of the
Loientz group'! and depends on the Euler angles as
given in (2.8). The function K is new as stated above.
We assume that the function exists and does not depend
on the angles 6, , and 6, ,. It will, always, be pos-
sible to construct such functions for special cases,
because we have (r—1)? elements of g{"™1g1)"! and
only {n — 1){(n — 2) Euler angles. It, however, is sufficient
for us to assume the existence of such functions in
what follows.

The normalization of the bases (3.21) under the
scalar product (3.23) is given by

<q){(f"_'2)'u")’ q’((‘;:f')o")>c =5 (3.24)

n 'n-l)()*n-]”

which gives the condition

/. dv,_,[1 —cosb,_,

(2-n)/2-unK (n=1) D(}\n -1) {n-1)
.21 [Ana
SO (n-1) ] (g n-2}{4n. 2)(g )

= [N 2|7,

(g("—l))nul n.l :cosen-ll' (3-25)

Here we use the condition of the representation of
SO(z - 1) and the relation (2.20a) to rewrite (3,24) into
(3.25). As the function K does not depend on the angles
0,,,and 6)_,,, it is easy fo see that the unitarity con-
dition relative to the scalar product (3.23) is satisfied,
i.e.,

(BY e (€)@ (orenon’, B (€)@ Rz on’),

=@y, @l .26)
Thus the representation becomes unitary relative to the
scalar product (3.23).

The boost matrix elements of the representation are
given by

bd(An-z, On) (

. (d) (Apez, °n)
An=1 (A 20251

(Mt Pn "'1(§)¢“n 210")>¢:°

(3.27)

As in the case of (A), this reduces to
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’d(An-Zlo ( )__ r((?l - 1)/2 \/N(An-l)N(Ayll-l)
¥ ak oo tes = T ((n = 2)/2) N0, N ,)

N(o
X n) n=1 N by
N(U", )\:._JX? ( n-3)

L6

n=2 (pog?ip.n

xj de sin™%6 dh-1)

X (coshé— cos8 sinhg)2=-m/ 2+,

x dl(\):.n-zl().m:;)m-z(g')’ (3’ 28)
where
0 g
cos e,zcos coshg — sinhg

cosh¢ — cosfsinhg *

By considering the infinitesimal transformation as in
(A), we obtain

i<An-2’om n-l{xn l}ann- | n-z, n!{xn-1}>

_ I(n-1)/2)
== Vrl{(n-2)/2)

X \/N(}\n-le(And) N(Um )\n-!)
N\, IN(A, ) NlogAl,)

2-n Ry
e o)

Taking into account (2.7), (3.15)—(3.20), we obtain for

myy =m,, ;Fland ml, ,=m, ., (1#])

(3.29)

n-1j

(3.30)

NogAey) _(m, o, +n/2-j\'"*
N{o,: +o,+n/2-j ’

ny n— ) My

for » odd. For n even, we must have ¢, =0o0r m,,,,=0
due to the C term. The first case is contained in the
principal series and we adopt the second case. Then we
obtain the same expression as (3. 30) for » even, We,
therefore, obtain the following expression for any A, _,
and A/ as in (), i.e.,

N(o,;n, )

n? " nel

N(on; Xn-l)

[(H)/21 T(m,., ~0,+n/2-j)I"(m! n-l sto, +n/2—])
Tim,., sto, +n/2— )T (m! m ., ;— 0, +n/2_]) °

(3.31)

It is noted that the expression (3.31) is the analytic
continuation of (3.13) in v,. For the complementary
series contrary to the principal series, we cannot de-
termine N(o,; \,.,) uniquely by (3. 24) and (3. 31), because
the scalar product contain the function K and the con-
stant is determined up to a constant factor from (3.31).
We may, however, choose the factor as follows:

=) T'(m,,_, ,— 0, +n/2 - ])
N(om n-l ['}-II r(mn-l J‘+° +7l; -7)

(3.32)

Then it follows that the function K is determined from
(3.25).
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Thus we have determined the constants which may be
written in a form

WEr iy Aoy

— A’y(pny An-l)
Nlpy; Ape

_ [[(n-ﬁ)/ﬂ T(m, . ;—p,—j+tDT0m,, o, tn—j=1) i
j=1 I_'(mn_1 it pn+n—j—1)r(m,,,-1j"Pn—j"_l) ’

(3.33)

where p, =2 -n)/2 +0,+iv,, 0,=0 for the principal
series, and v, =0 for the complementary series.

As we have obtained the general formulas for the
bases and the boost matrix elements for the UIR’s of
SO(n -1, 1) by defining the scalar products, it is easy
to give their expressions for each of the UIR’s. We,
however, point out one special case., For K=const, it
follows that the representation of A,_,=0 [0{— 0,<(n-2)/2]
is realized, i.e., m,;=0 for j=2, 3,..., [#/2]. In this
case, the expressions (3.21), (3.25), and (3.28) become
as follows:

(0,8 (n-l)
e (gt =

[ M) Ty, — 0, +0/2-1) Lz
Vi r(mn-11+0n+n/é—1)

X [ na1)
D(O;l{ )‘n-2)

(g(n-l))’ (3. 34)

dO‘n-l )(9)

0(0)0

n_11+0n+n/2—1)
Tlm,,,-0,+n/2-1)

(&)

cf” d6sin™26 (1 - cos6) @2 on
0

.35
V,sT(n=2)/2 T'(m (3.35)
Dpacare

b4 (0,0,)
dmn=1

(Mg 10mpay 1
I'(n-1)/2)

_ VNG IONDET
T Vn((n-2)/2)

NQ,.2)

Moy y +0, +0/2 DT (m! =0, +n/2-1

X2 N
An-3

X[Ilj(mn-u 0,7/ 2-VT(m!, +0,+n/2- 1]12

M es) jo de sin™3¢ X

dima-in)
Nmpeg1)mng 1 (6) (COShgj

{2=n)/2+op

— cosé sinhg)

{m '
Xdo("'n 311 Maaz 1 o),

(3.36)

where A ;=(m,, 0,...,0) forj=n-1,n-2,2n-3,

{my, +i =31 2my +i-2)
(]—2)'mﬂ!

N )= (j=n-1,n-2, n-3),

and d(("’;"lsll)m,, 2 1 (8)’s are the d matrix elements with
the special values of the numbers m , of SO ~1).

The d matrix elements of SO(xn) and those of the inho-
mogeneous orthogonal group (Euclid motion) are obtained
from (3.8) by the continuation and the contraction.*-®
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4. ACHARACTERISTIC NUMBER p,

In Sec. 3., a complex number p, is regarded as the
same as the corresponding one in Sec, 2. It will, how-
ever, be necessary to show that they may be considered
as the same one.

Let us start with the infinitesimal method of Sec. 2.
It is known that the bases of SOz -1, 1) are classified
by the group chain SO(n -1, 1) D80 - 1) «» > S0(2)*
and the second-order Casimir operator F("-:1) of
SO(n — 1, 1) has the eigenvalue with respect to the
bases'®

[n/2

|
Flrhb =p (o +n - 2) + 2 13 (115 + 1 = 24),

where F™L1) ig defined by

n=
Fon 25 pe Tmr
i
The characteristic number p, takes a value in each
class of the UIR of SO(n~1,1).7-?

Now, we consider the Casimir operator in the case
of the finite method in Sec. 3. It is known that the action
of D,,(j, k<n-1)on the D™ of (2,16) can be expressed
in terms of the parameters (Euler angles) of the first
and second parameter groups as follows

D].kD‘"‘” =dJ, Db, D"V D, =d, Dt (4. 2)

where J,, and J , are differential operators of the first
and second parameter groups corresponding to D,
These J,, and J, can be expressed in terms of the
Euler angles (6) and differential operators 6209
=— ta/BB ) and theu' expressions may be summarized
as followszz

o1 g =C€086, Ppyyy

cosé sinG -
—3—9 11 sind, P, + e Jreen (4. 3)
SING,,; 4 sind,,;,
ka»l P COSG"_I n-kPn-l f1=k~1
cos?d
7 “nel nepel SInG P
SmGn_l nioel n=1 n=k" n=1n=k
siné
do——neimmk gt (3sksn-2), (4.4)
Slnen-l n=k=1
cosf,, sing,,
J 3 =080, P, - ind, sinby Py + — o —Ap., (4.5
J31 = COSB"_I n-an-l n=3
€086,,1 p.3 o siné,_, .»
- G Sln9n=1 n-ZPn-l n=2 + '—"_"_P 2 =39
siné,_; .4 sinf,_; , ., "
(4.6)

where the prime on J},.1 means the substitutions 6, p;,
— 041 pe1s DPjerpa IN Ty, and that on Jp,, the substitu-

tions 6, pgp— 65y pess Pjerper N Jppuss
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The operators J, and J,, satisfy the commutation
relations

[Ties Tim )= = 800 3T + O T 1 = Oy = Oy T 3)s (41

(s 1= 800 5y Tim + Oum s = O Ty = 01 )y (4.8)

[T s 3, 1=0. (4.9)

im
The expressions for any J,, and J,, (j, k<n-1) are
obtained from (4.7) and (4. 8) together with (4.3)—(4.6).

The infinitesimal operator of the representation
corresponding to the boost %", (¢) is obtained from
(3.4) as follows:

Jpnt == 80,1 1P, ~ip,cOS6,,, (4.10)
where the symbol p/ is used instead of p, in (3.4). The

operators J,,; (1<j<n-1)are obtained from the commu-
tation relation

Jo; =W nners Ipey ;1 (4.11)
Then, it is easy to see that the operators J,,(j, k< n)
satisfy the commutation relations of SO{(n -1, 1).

It follows from the second relation of (4.2) that the
bases (3.2) are specified by the numbers {3, } which
are classified by the group chain SOz — 1) > SO(n - 2}

D +-» D S0(2) and are considered to be the same as those

in the infinitesimal method. The second-order Casimir

operator is given in the present case as follows:
=1 n=1

i>k

(4.12)

Making use of the relations (4.10), (4.11), (4.4), (4.6),
and (4.8), we can express the right-hand side of (4.12)
as follows:

n=2
Fibh= ot (5f b p = 2)+ 25 T2,

i>k

(4.13)

The second term on the right-hand side of (4.13) is the
second-order Casimir operator of the first parameter
group of SO(n - 2). It, therefore, follows from the first
relation of (4.2) that the action of (4.13) on the bases
(3.2) gives the eigenvalue

ins2)

My (m,; +n = 2j).
j=2

FUmLb = p(p! 4 _ 2) + (4.14)
By comparing (4.1) and (4.14), we may take p,=p/
without loss of generality. Thus the complex numbers
p, in Secs. 2 and 3 may be considered as the same one.

5. SIMPLE CASES

In this section, we give the boost matrix elements
for the special cases #=3 and 4, though these are well-
known!%16,

(@) n=3:

(i) Principal series, —« < m <, integer or half-
integer, (3.8) becomes
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bdy) ()=

1 [F(m’ + v+ (m - fv +3)| /2
2n Tm" -iv+3)T(m +iv+ %)
2r
xf dbexp(-im’8)
0
X (coshg — cosf sinhg)* 2+ exp(im6’). (5.1)

This is integrated as follows:

bd%) (£)=(=1)2a E(m +iv +3)m ~ v +%>]1f2

m" —tv+3)T(m +iv +3)

% Ten+iv+ HT(=m+iv+ i)
Dp-q+iv+ )IT=p—qg+iv+ 3(29)!

X (cosh3¢)?? (sinhz¢)
R pt+qts—iv, p+qgt+z+iv; 2g+1;
- sinh%3¢), (5.2)
where p=(m +m')/2 and g= |m-m"'|/2.

(ii) D°(0), O<o <3,

— o <m <o, integer,

bdle) (¢)=[v —o in (5.2)]. (5.3)

b

{iii) D*(0), —6=0, 1/2,1,--, mz= -0+

’
°de) (¢)=[iv—~o in (5.2)].
(iv) D'(0), -0=0,1/2,1,..., —m>-0+3,

d!0 (¢)=[iv -0 in (5.2)]. (5.5)
It is noted that for D*(0), we must get rid of the singu-
larity of the gamma functions, when we write the norma-
lized bases; i.e., the relations I'(—m)/T(-m')
=(=1y"'T(m’'+1)/T(m +1) for m and m’ positive in-
tegers must be used,

() n=4:
(i) Principal series, }kol =integer or half-integer,

j= ]ko‘, ‘kol +1, -+ (3.8) gives

A3 o)

A 1) T2
:%[(2j+1)(2j’+1)]1/z[r(] iv+1)(§ +iv+ ))]

CG+iv+ DG —iv+1
Xf: df sinf dg’;;(Q) (coshg — cos@sinhi;)‘“""d;;;(e'),

(5.6)

where d\%, () is the d matrix element of SO(3). This
is easily integrated but their expressions are omitted.
They satisfy the relations'®

b gk, =Leiv) (4) — jo=jb g (kg =1+iv)
dfe T NE) = (= 1) 0 0 (2),

b g{Rge =L+ iv) _ b glm, =lejy)
dplmyy (&)= "d576057(E),

b glkgy=1+iv) — b y(=kg, =1+i
d!’&'n; V()= d§'(-r(3u'>j“")(§),

(5.7)
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bd(fkg,";;ﬁv)(g) e (_ l)i’-jbdj(l:gl,)}il-iv)(é.)’

) = gt 1),

P g () = e (¢).

(ii) D'(0), ky=0, 0(-c{l, j=0

b

2dl% 0 (&)= liv—0, k,—0 in (5.6)].

"{m)

(5.8)

In this way, we can give any matrix elements step by
step.!®

APPENDIX

In this Appendix, it is shown that if we require the
commutation relations for the infinitesimal operators
of SO(n~1, 1), (3.4) holds in general.

The action of the representation operator R? . (¢),
which corresponds to the boost *#", (¢}, on £({6,_,}) can
be defined as follows'?

th:n-l (g)f({gn-l})

:A/I(gn-l )8 g)f({en-Z}? (Grlr-l 1s 971—1 2y Gn-l n-2))’

(A1)
where the multiplier M(9, ¢) is

alb,,,)
0 — =11
M6, ,, ) GANE
and 6/_,, is given by the relation (2. 14). It is assumed
that o(6) depends only on 6,_; , because 6’s except for

6:_, , do not change under the boost %, ,(¢). The infini-
tesimal operator J,,., of R%, ;(¢) is obtained from (A1),

Joms flB, D =1 ;g [M(6,. 1, ) F (8,21

(eln-l 1 9n-1 29%°°3 9,,_1 n-Z))]::()
:taer'l-l 1 a 1 da(0"-1 1)
¢ t=0\30, ,,  a(f,.,,) do,.,
X ({6t} (A2)

Thus, J, ,.1 iS given by using the relation (2. 14) as
follows,

. 0 1 da(f,_, \
Jpng=%8ind __ - LA (A3)
! et <89n-x1 (0,1 1) ne11
We calculate J,_, by making use of (A3) and (4.4)
with £ —n - 2 through
Jnn-z =i [er-ly Jn-ln-z ]: (A4)
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and require that the following relation holds,

Jn-—l n-2:i[‘jn n=1» Jn n..z‘lc (A5)
Then we obtain with 6, , — 0
d (sin da(&)) . & [sing da(6)
0 —({—— — "] =
cosY 7 (a(G) a0 sind 7 @y a0 )
(A8)
This relation gives
9 c
a(0) = c(sinp)n <tan §> Y
(A7)

J, =i (sin@ % ~p,cosf— c,)
where ¢, ¢, and p, are some constants. We can take

¢, =0 without loss of generality, because the ¢, term
gives a multiplicative factor in the representation

matrix of R? ..1() and we are dealing with the repre-
sentation of the group 8SO(m -1, 1). We, therefore, obtain
the solution for «(6) and the expression for the genera-
tor and the multiplier as follows:

a(6) = c(sin 0)n,

I y—tlsind d% - pnCOS(?> , &8)
sinf\ *» R R
M8, &)= Sing’ = (cosh¢ - cos@ sinhg )*n,

where p, may be any complex number up to now,
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Symmetries of the stationary Einstein-Maxwell equations.
IV. Transformations which preserve asymptotic flatness?

William Kinnersley and D. M. Chitre

Department of Physics, Montana State University, Bozeman, Montana 59717

(Received 5 April 1978)
K

We give a series of transformations 8, k =0,1,... which may be used to generate new stationary axially-
symmetric vacuum solutions from ones already known. These transformations have the important property
of preserving asymptotic flatness. As one example of their use, we show how to generate the Kerr metric
from Schwarzschild. As a second example, we generate a new five-parameter vacuum solution which

contains the 6 = 2 Tomimatsu-Sato solution as a special case.

1. INTRODUCTION

Except for the Schwarzschild and Kerr metrics and
possibly one or two others, the exact solutions of
Einstein's equations have played a very minor role thus
far in the development of general relativity. This has
been the case because the known exact solutions are
mostly mathematical curiosities and do not satisfy the
boundary conditions required by the rest of physics.
Recently we have been working to change this situation,
by trying to develop methods of exact solution which
lead to practical and useful results. 1-5

We have concentrated on the problem of the stationary,
axially symmetric Einstein—Maxwell field. The field
equations for this case are remarkably simple, and
certainly possess a large class of physically realistic
solutions. Yet only a handful are known today.

We have been attacking this problem via a systematic
study of the symmetry transformations which leave the
field equations invariant. Every such transformation
provides us with a solution-generating technique, where-
by any known solution may be used to generate a one-
parameter family of new solutions. We have been able
to write down the entire group K’ of all symmetry trans-
formations for the reduced Einstein—Maxwell equations.
K’ contains an infinite number of arbitrary parameters;
and so does K K’, the corresponding symmetry group
for the vacuum field equations. Thus for the solution
generation we have an infinite number of degrees of
freedom. Geroch’s conjecture is that this group free-
dom is sufficient to generate all stationary solutions.®
We have succeeded in proving so for the static case.

K is given in terms of its action on an infinite
hierarchy of fields and potentials, which we have shown
must exist for a stationary metric (see II for details.)
Before K can be applied to a given spacetime, we must
have an effective procedure for calculating these
quantities. This question is addressed in Sec. 2.

The individual transformations of K that we have
previously dealt with do not preserve asymptotic flat-
ness, and this runs contrary to our stated objectives.
We have now identified an infinite-parameter subgroup
B < K which does preseyve asymptotic flatness (see
Sec. 3.) Applied to any stationary axially symmetric

Vsypported by N. S. F. Grant PHY 76-12246.
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asymptotically flat metric, B produces new asymptoti-
cally flat metrics. In particular when Schwarzschild
is used for the initial metric, one of the new metrics
generated is Kerr. A rational way of generating Kerr
from Schwarzschild had been sought for a long time.

Our hope is that with the aid of B, it will be possible
to produce a large variety of new and realistic solutions.
One such solution is presented in this paper, in Sec. 4.

2. CALCULATION OF POTENTIALS

We turn first to the question of how to calculate the
potentials for a given spacetime. In practical applica-
tions this is where most of the labor is involved, and
it is important to have an efficient method.

The approach is to use generating functions F 45 (/),
Gasls, 1) defined by

Fap =% I"Hyp, (2.1)
n=0
o mn

GAB:ESmfn‘VAB- (2.2)
n=0

From the field equations and the recursion relation for

n
H,5, we have already shown that F,5 obeys

VF g ==ip™ 4"V Fys, (2.3)

VF 45 =itl(Hyy + HE,) VF¥ g + FXp VH, . (2.4)
Recalling that

Hyp+HE, =2fsn +2i2€45,
we can write Eq. (2.4) as

(1-212) VF 45 + 2ipVF 15 =il F¥, VH, (2.5)
or

VF,5 =itS7[(1 - 212) VH 1y - 2tp VH, | F%5, (2.6)
where

§* =(1-22)* + (21p)". 2.7

To solve Egs. (2.3), (2.5) we would like to decouple
the variables, obtaining individual equations for each
component of F,5. This can be done most easily by
temporary abandonment of the manifest covariance.

Write out the A =1 components of Eq. (2.3):
VFIE = - Z.p-lf‘lzer + ip'lfue FZB .
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Divide by f1; and take the divergence to eliminate the
Fyp term:

Ve[ AT (VFig +ip™ f1,9F 15)] = 0.

Expand this, using the definition of i, [Eq. (I1.4.7] to

get
FuuViFg = VH " VFy5 . (2.8

This linear second-order equation for Fy5 is a direct
generalization of the Ernst equation.” The A =2 com-
ponents of Eq. (2. 3) yield

foa V' Fyp = VHyy * VFyp 2.9
Now write out the A =1 components of Eq. {2.5):
(1-2t2)Fig , +2tpF1p , = il(FopHyy , — FipHyy ),
(1-2t2) Fig , - 2t2F 5 , =it(FypHyy,, - FigHy ).
(2. 10)

Here the elimination of Fyp can be done algebraically.
The resulting first-order equation is

[(1-2t2)Hyy , + 2tpHyy | Fig o+ (200Hy, ,
-(1-2£2)Hyy ,|Fip ,
=itlHyy yHyy o = Hyy (Hy | Fip
or

(1= 2tz) VHyy * VFyp + 20pVH,, * VFys

=it(VHyy * VHy,) F, . (2.11)
Likewise for A =2,
(1=2t2) VHyy * VFyp + 2tpVHy, * VF,p

=it(VHy, * YHy) Fop . (2.12)

Equation (2. 11) can be solved by the method of char-
acteristics.® Its solution will contain one arbitrary
function, say g. When this is inserted in Eq. (2.8), we
get a linear second-order ordinary differential equation
for g. The two linearly independent solutions corre-
spond to Fy; and Fj;. We do not need to solve Eqs. (2.9)
and (2. 12) for Fy5, since Fyz may be obtained algebrai-
cally from Eq. {2.10), once Fyg is known.

Now suppose that F.5(?) has been found. The next step
is to construct G,5(s,#). It is remarkable that this can
also be done algebraically, with no further integrations.
Define two auxiliary generating functions,

oo mi

G' g =7y s™Nya, (2.13)
Q 1n
'Gag =27 1"N,p . (2.14)
n=f

The recursion relations, Eqs. (Il.2.18) and (11, 2. 22),
become

Gapls, 1) = GE 1, s) = €45 + F%,(s) FXg (1), (2.15)

'Gap(t) - GE () =HE, F¥5 (1), (2.16)
tGap(s, 1) = €4n 1= 57 [Gua(s, ) +iF4a(1)]

=G’ 45 (s) F¥5 (1), (2.17
tFap(t) —i€ap ) =1l' G an (1) + Hyx F¥5 (D] (2.18)

Solving Eqs. (2.18), (2.186), and (2.17) in that order,
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we find
Gap(t) == 1 € p — il F 45 (1) = Hy xF¥5 (1),
GIAB(S):S-IEAB +i$"1F*BA(S) ~ (Hyg + HE ) F** ,(s)

=s€,p +is T FPEL(s) — 2i2F% 4(s) ~ 2y F* %, (),

(2.19)

(2.20)
Gag(s, ) =(s = 1) [se 5 — tF%,(s) F¥X5 (1)
+ 2512 F%,(s) F¥5 (D)
- 2ist fxyF* % 4 () FY5 (D). (2.21)

The solution we have found satisfies Eq. (2.15) identi-
cally, and hence obeys all of the required conditions.
However, it will not have a series expansion of the form
Eg. (2.2) unless the pole at s =/ is absent. The neces-
sary and sufficient condition for this is that when we

set s =/, the remaining factors in G,z(s, f) must vanish.
That is,

€45 — (1= 2t2) F%,FXy — 25t fry F* ¥, F¥p =0, (2.22)

Thus the existence of a G5(s, /} which obeys the
recursion relations imposes a set of four real
(Hermitian) constraints on F,5(t).

In the (f, w) parametrization of the metric (see I,
Sec. 4) the constraints may be written out in more de-
tail. They become

2iftFy = (1< 212 = 2itfw) Fyy +SFy*, (2.23)
2ifiFy = (1= 21z = 2i{fw) Fy, + SFp¥, (2.24)
f‘ll*Flz—F11F12*:2iffs.2. (2-25)

Together they are consistent with the first integral
found in 11i,

Fy Fyy — FiyFgy == S, (2.26)

Zipoy-—-Voorhees metrics

As an example, we will calculate potentials for the
Zipoy—Voorhees class of static metrics, 1% which in-
cludes the Schwarzschild metric and the static limits of
the Tomimatsu—Sato metrics. We work in the usual
prolate spheroidal coordinates x, v, related to cylin-
drical coordinates p,z by

Pt =(F = 1)(1-1D),

z=xv, (2.27)

Vx=-px? — 1) vy,
The Zipoy—Voorhees metric is given by11

x~-13\°8 .

Hll :f: 1 , H12 :21’\)(5"— 6)- (2-28)
Equation (2. 11) becomes
(1-2txy) Fip y = 2(x* = 1) Fip ,=2H{x - 8) Fyp . (2.29)
The corresponding characteristic equations are

dv —dx dFg
= = = 2.3

1-2txv — 2t(x* = 1) ~ 2¢(x —= 0) Fyp ( o
with solutions

x -2t =alx® - DE, (2.31)
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b, (=) (2.32)
Fis= (x*=1) (x + 1) ’ :

Equation (2. 31) determines a family of characteristic
curves in the x, v plane, and Eq. (2.32) tells how Fis
varies along the curves. Here a, b are constant along
each curve, and we may now regard b as an arbitrary

function of a.

To determine b(a), we substitute Eqs. (2.31), (2,.32)
into Eq. (2.8). We find

(@ +4f-1)b" +3ab’ +(1-6b=0 (2.33)
with solutions R~ (e +R)°, where
R=(d*+4f - 1)/}
=S(x* - 1)/2, (2.34)
Thus, we obtain the generating functions
Fu=1 te(?) (x_-_l)” (a=R)®
L= \x+1 R
_ el (————" ~ 2y =8 ) " (2.35)
Fpp = id(t) (x— 2ty + 8 )",
N x+1

where c(t), d(t) are yet to be determined.

The case 8 =N, an arbitrary integer, is the one of
greatest interest, since this corresponds to the static
limit of the Tomimatsu-Sato metrics. Suppose we make
the simplest choice, c=d=1, Then Fy; +itFy; will be
a polynomial in f of degree N.* Hence

n+l n

iHu:le’ n?N. (2.36)

However, this choice violates Eq. (2.25). It would
correspond to a more general gauge in which recursion
relations (II.2.22) did not hold. ln fact from Eq, (2.35)
we calculate

ied, (x-1\"°
F11F12=l§2‘t(x+1) (1-48),

Therefore, a consistent choice is to take
c=d=(1-4£#)*"%, (2.3m

The other potentials now follow from Eqs. (2.21),
(2.23), and (2.24).

3. THE SUBGROUP B

In III, we saw what happened when the transforma-
tions of the vacuum symmetry group K were applied
to flat space. For the infinitesimal transformations,

k
Y1 Hy = 1+iv(27)**'P, 1 (cosb),
Y2t Hig = 1= 27(29)*P,(cos®), (3.1)

k : .1

Yoo tHyy = 1-1v(29)'P, 1 (cosb).

k

Thus the Y45 generate weak gravitational fields of the
electric multipole and magnetic multipole variety. All

of the fields diverge at spatial infinity, and hence each
transformation 7,5 violates asymptotic flatness.
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k .
Is there some linear combination of the Y45 which is
more well behaved ? It would seem, for one thing, that

we have “too many” transformations, since both %, and

k42
7+22 generate the same multipole. Logically, one should

therefore devote particular attention to the combinations

L

+2
32711+k722, k=0,1,""". (8.2)

They form an Abelian subgroup, which we call B. The
infinitesimal transformations of B leave Hy; for flat
space invariant. Does that hold true also for the finite
transformations ? We shall show that it does.

Using the infinitesimal transformations as given in
Eq. (I1.3.1), we can calculate

k mn mn mek+l,n mék 40
B:Ny =Ny +Bli( Ny —i Ny)
mnek+l m, ek ml  Rel.n kn

—i( Ny +1 Nyg) +Nyg{ Nyy—iNyy)

m +2 m,k+l On 1 ms  k+tlas,n k-s,n

m,s+
+( Nll +l le)N11+sE( N11+iN12)( N11 —i IV'Zl)

(3.3)
mn mn mn
and also similar expressions for Ny;, Njyj, and Ny,
However, the form of Eq. (3.3) strongly suggests that
a simplification would occur if we used instead certain
linear combinations of the N 5. We therefore define
On Ol
Pou=Ny +i Ny,

mal,n myn-1 m-l,n-1

mn
Pmn: Nu—i N21+i N12 + LV22 s m >0, (3.4)
00
In particular, sinceN 5 = €45, we have
01
Pyu=Ny+i=-i(H;-1). (3.5)

R
The transformation 8 can now be written in terms of
what it does to P,,:

k
b :POn "Po,, +B(— 2iP0'",k.1 +Z\/ POS‘Pk42-S,")
s
P~ P +B(2P a1 n— 21P  popst

+§1Pmspk+2-s,n)> (3-6)

where the summations run from s=1to s=4/+2.

For flat space the P,, all vanish [see Eq. (1. 4.19)].
We see from Eqg. (3. 6) that after a transformation of
B (even a finite one) they must continue to vanish, In
particular the relation H;; =1 will be preserved, and
flat space will remain flat space, in the same gauge,
and in the same coordinates.

Now suppose we start with a space which is
asymptotically flat. We can pick a gauge for the poten-
tials such that P,, - 0 at spatial infinity. Since B pre-
serves this condition, it automatically preserves
asymptotic flatness. ™

To adapt the generating function approach to our
present needs, we may define

n n . n-l
Jya=Hy +i Hy,, (3.7
n
R, (=Y, 1"J,
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— Fay +ilFy,, (3. 8)
Qs, =2, 8""P
:Gll+i/612—i5‘621+.§/622. (3.9)

Then R4, € bear much the same relation to each other
as do Fup and G4z, and € may be determined algebrai-
cally once R4 is known, In fact, from Eq. (2.21),

@(s, ) = (s = )7 2ist(1 = fxyR**RY)

- 1(1-2sz) Ry*R¥], (3.10)

4. APPLICATIONS OF B

To illustrate how B may be used to generate asymptot-
ically flat metrics, we will apply it to the Zipoy—
Voorhees solution. We will show that the metrics pro-
duced include Kerr, NUT, and Tomimatsu—Sato, as
well as others which are new.

A. Kerr-NUT from Schwarzschild

We start from Schwarzschild, which is the Zipoy—
Voorhees metric for =1, From the results of Sec. 24,
we have

Ry - =201 =41 (e + 1),

Ry=—i(1-4/M"2(1 4 2¢v). @.1)
Q(s, /) may now be calculated via Eq. (3.10) and ex-
panded in powers of s and / to yield the P,,’s. For
example,

Py =2i(x+ 1), Py=aiv(y+1)", (4.2)

Py =0, Prp=4i. (4.3)

Actually, it is not even necessary to examine any
others beyond these, since for d=1, all of the higher
P..'s are fixed linear combinations of the above four.
This can be seen readily from the expansion of

Eg. {4.1),

2k 0 20+l 1

Jy=cyda, Jy=0ydy, (4.4)
where ¢, are the expansion coefficients of (1 - 4/%)-/%,
Thus

Py =2Py, Piyy=Py=2Py,

Py =2Pg - 4, (4.5)

and so forth. Furthermore, one can prove that these

relationships, Eqs. (4.3)—(4.5), ave presevved undev
k

8.

The entire infinite set of transformation equations,
Eq. (3.6), can therefore be reduced to repetitions, up
to a factor, of a very small and manageable subset.

0

For B there are only two distinct equations,

0
Py ~Py +BPy Py,

0 (4.6)
Py =Py +B(Py Py + 8Py + 16),

1
while for 8 there is only one:

1
Py —~Po +4B(Py Py - 2iPg). 4.7
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x
The same recursion relations also cause the 5 to re-
peat. We find that
2 0

B =48,

Therefore, when B is applied to Schwarzschild, we
have effectively only two independent transformations,
and will be able to generate a three-parameter §=1
metric.

etc.

As discussed in Ref. 5, the equations may be treated
as differential equations and integrated to find the trans-
formations for finite B. Equation (4.2) supplies the

0

initial conditions at B=0. For 8,

8Py

3 —FuPu,
(4.8)
aP .
3511 =Py, Py + 8iPy + 16,
with solutions
Py = 2 ,
acos4B - ibsindB+1
Py — 4i ( b cos4p - ia sindp ) (4.9)
ne acos4B~ibsindf+1/°

where @, b are integration constants. From the initial
conditions, a=x, b=y. To obtain agreement with con-
ventional notation, let

P =cos4f, g=-sindB, p*+q°=1. (4. 10)

Then the Ernst potential for our solution is

1-Hy _ -iPy 1
= = = 4.1
1+Hyy 2+1Py  px+igy’ (4.11)

£

which is the known form for the Kerr metric.”’
Solving Eq. (4.6) in a similar fashion, we find
Py =2i{1 + x exp(8iB)) 2,
£=x" exp(- BiB). (4.12)

This corresponds to NUT space, with NUT parameter

[ given by
1/m =~ tan8p. (4.13)

0 1
To obtain 6=1 metrics in which B, 13 are both non-
0

zero, we may simply perform 8 and 8 transformations
in succession. This is permissible even when the pa-
rameters are finite, since B is Abelian. The three-
parameter family of metrics which results is thus
Kerr—NUT space.

B. Generalization of Tomimatsu-Sato
For the Zipoy—Voorhees metric with 6=2,
Ry =~ 4t(1 - 4% (x + 1) (x - 2ty),

4,14
Ry =—i(1~4/) 1+ 4ty + 4% (x - D (x + 1~ 29 (4.14)
From this we calculate

Pu=4ix(x+1)2, Pgy=—8iy(x+ 172
Py =18ixy(x + 1), Py = = 166{x + 1)2x? + %),
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Py = 16i(x + D% = 17203 + 22 + 9% = 3xy7),

Pyy = - 64iy(x + 1) = 1) x =2,
(4.15)

The recursion relations are

PO,Zl#n:4lP0m n=1, 2’

(4. 16)

mrs M,n=12,

P2k+m,21+n =4rip
Once more, one may prove that the transformations of

k
B preserve the recursion relations. For each 8, six
transformation equations will be necessary. The solu-
tion of six nonlinear coupled differential equations is
not an easy matter. We therefore digress upon a gen-
eral way we have found of linearizing them.

R
In order to handle all of the 8’s at once, we let B de-
note the final constant values. The instantaneous values

k
will be A3, where 0< A<1 is the variable of integration.
The original set of transformation equations may be
written in terms of infinite matrices:

Z—I; =PAP + BP - PB, (4.17)
where
0 Py Py
p_ | O Pu Py ’
0 Py Py
0
0 0B
g
0 .
A=| | 5 , (4.18)
B BB
0O 000O0Q "
§ 6B
B_9; 0 025 . ,
0 008 B
and the tilde denotes the transpose.
We try to solve Eq. (4.17) via an ansatz:
=ND, (4.19)

where N, D are also infinite matrices. Inserting this
in Eq. (4. 17) gives

anN . adD 1 1 -1 R
N D" _ND ar D" =ND~“AND- + BND-* - ND-'B,
(4.20)
If we choose N, D to obey
dN dD =~
=BN, o5 =BD-AN, (4.21)

then Eq. (4.20) will be satisfied. We now have twice as
many equations to solve, but they are linear. At A=0
we will impose the further initial conditions N =P(0),
D=1,
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The solutions of Eq. (4.21) are
N(2) = exp(AB) P(0),

DOV = exp(B)(1 - C() P(0)), (4.22)
where

c(N= j;)x exp(— \B) A exp(AB) dX. (4.23)
Hence the finite transformation is

P(1) = exp(B) P(0)I - C(1) P(0)]" exp(~ B). (4.24)

Return now to the special case of the Zipoy—Voorhees
metric for 6=2. The recursion relations enable us to
replace P, A, B by 3X3 matrices. P is merely
truncated, and now

0 2 7]
0 0 B+4p
1 3 0 2 1 3
A= | 48+168 B+88 B+8B ,
0 2 1 3 2
B+48 pB+88 B
0 0 0
1 3 0 2
B=2i{ 0 48+168 B+4P
0 2 1 3
0 48+ 168 4B+ 16B

(4.25)

.3
The B’s repeat themselves for 6=2 also, starting this
time with

s 2 9
B=8B-168

We have four effective transformations and will be able
to generate a five-parameter 6 =2 metric.

The results of the calculation are
~

0 Py Poﬂ
N= |0 Ny Ny ;
0 Ny Ny
- 3
1 0 0

D= | 0 Dy Dy (4.26)

-0 Dy Dy,
where
Ny =(Py; cosd @+ 3iPy sind ag) exp(8iay),
Ny =(Py; cosday + 3Py, sinda,) exp(8iay),
Ny =(2iPy; sinday + Py cosday) exp(8iay),
Ny =(2iPy, sindag + Py, cosday) exp(8iay),
Dy ==3iPy + (1 + 3iPy; — ayPy; — 34,Py;) cosdag exp(8ias)
- 8(Py1 + 166 @, Pyy + 2i@,Pyy) sinda, exp(8ia,),
Dyy = — 3iPgy + (31P 3 — 03Pgy — 305Py5) cosday exp(8i ;)
- #(~ 167 + Pyy + 16i 0, Py, + 21 0y Pyy) sind @, exp(8i ),
Dy = - 5(8yPyy + @,Py;) cosda, exp(8i )

+ (164 - 8Py; + Py; - 16i 1Py - 8i%,Pyy) sinda,

X exp(8iay),
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Dy =3(8 - 80,Py — 0yPy,) cosd oy exp(8iay)

+ %(_ 8Py, + Pyy — 16 Py, — 8i 0,Py,) sind e,

X exp(87 a;)

(4.27)

and where

0 2 1 3
ay=PB+4p, % =P+ 8p,

0 2 1 3 (4.28)
CYZ:B+IZB, 03:8"'48.
The transformation of Py, is

Py~ PyDyy — PypDyy (4.29)

D11D22 - DIZDZI

When the initial values of P,, are inserted, we obtain for the Ernst potential,

2px(x* = 1) = 2igy(1 = v?) = 2i(pa + igB) x(x* — v*) + 2i(pB + iga) y(x* — %)

£=exp(—1iv) (

where we have put

p=cosda,, g=sinda, p*+q¢'=1, a=16a,, B=4a,,

PPt = 1) = 2ipgay (¥ = 95 + *(vF = 1) = 25 a(x® + 97 = 2x%0%) - 2iBxy (¥ + 17 = 2) + (@ — B (X% = v7)° ) ’

(4.30)

y=8a,, (4.31)

As before, the fifth parameter is the mass m, contained in the dimensionless coordinate x.

Particular cases of this metric may be obtained by special choices of the parameters. For example, for
@=PB=y=0 we recover the =2 Tomimatsu—Sato metric. For p=1, g=&=7=0 we recover the solution quoted

in Ref. 5,

Similar considerations apply for higher values of 6. For example, for 6=3 a set of 4X4 matrix equations are

0 5
involved. The independent transformations are 8,...,8, and they lead to a seven-parameter vacuum solution. Ex-
clusion of the NUT parameter leaves a six-parameter asymptotically flat metric.

Nole added in proof: We would like to thank John Wainwright, University of Waterloo, for verifying directly with
an algebraic computer program that Eq. (4.30) does satisfy the Ernst equation.
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On invariant integration over SU(N)?
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We give a graphical algorithm for evaluation of invariant integrals of polynomials in SU(N) group
elements. Such integrals occur in strongly coupled lattice gauge theory. The results are expressed in terms

of totally antisymmetric tensors and Kronecker delta symbols.

For the strong coupling expansion of lattice gauge
theory one requires invariant integrals over polynomials
in elements of the fundamental gauge group. "> To ex-
plicitly exhibit the invariant measure of a group is in
principle straightforward but often in practice a rather
tedious task. Beginning with some parametrization,
i.e., a generalization of the Euler angles for the rota-
tion group, one studies the group transformation prop-
erites of a small volume element in this parameter
space. Fortunately, symmetry arguments can deter-
mine many integrals, thus sidestepping the explicit
construction of the invariant measure. We will show how
the symmetry properties of the groups SU(N) give rise
to a set of rules for evaluation of the integrals arising
in strongly coupled gauge theory. This generalizes to
arbitrary N the rules of Ref. 2 for SU(3).

Given any compact Lie group, it is well known that
there exists a unique normalized integration measure
with the properties

[def(9) = [ def(gy8g) = [ def(g™), [dg=1, (1)

where g is the group element being integrated over,
f(g) is an arbitrary function of g, and g, and g, are
arbitrary fixed group elements. In this paper we are
interested in the group SU(N); so, g represents an N
by N unitary matrix of determinant one. We wish to
evaluate integrals of the form

I= | dggiljl"'gi,,jng;ill" T (2)

m'm

where matrix indices for the g’s and g‘l’s are explicitly
indicated. We introduce a generating function for such
integrals

W(W,K) = [ dgexp[TrWJg+Kg™)], (3

where J and K are arbitrary N by N matrices. Integrals
of the form of Eq. (2) are obtained from W(J, K) by
differentiating

=( 2 L wuk

J1iq annin aKllkl aKlnkn

JeK=0
(4)

We wish to express W(J, K) in a convenient form that
will permit a graphical evaluation of these
derivatives.

We first eliminate the K dependence of W by ex-
pressing g™ in terms of the cofactor of £. The cofactors
of a matrix are easily extracted using the totally anti-
symmetric tensor €y reeniy which satisfies

This manuscript has been authored under contract EY-76-C-
02-0016 with the U, S, Department of Energy.
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€ 4. =1 (5)

Since g is of determinant one we obtain the simple
expression

g5 = (cotg);;

1

T € rigseensiyg Sivipeee Iy &indgr o0 iy iy

(6)
Using this, multiple derivatives with respect to J can
replace derivatives with respect to K; thus, we write

W(J,K)_exp{Tr [K <cof 6%)] } w(J), (7
where
W(J) = f dg exp(TrJg). (8)

To evaluate W(J) we make use of the invariance of the
integration measure, which immediately implies

W) = W(gwe), (9)

where gy and g; are arbitrary matrices in SU(N). In an
appendix of Ref. 2 it is proven that any analytic function
of J satisfying Eq. (9) is expressible as a power series
in the determinant of J. Thus we write

INGE

W) = 25 a, (det])} . (10)

i
>

i
The fact that the integration measure is normalized
implies

a;=1. (11)

We now derive a recursion relation to determine further
a,. Since elements of SU(N) have determinant one, W(J)
must satisfy the differential equation

2
(det -87> W) = W) | (12)

A combinatoric exercise in the Appendix shows

2 ; G+N-)
(det m) (det)? = G-l

From Egs. (10), (12), and (13) we obtain
(i -1

(det)i-t, (13)

L EN Y LS (14)
With Eq. (11) this is solved by
2131 (N =1)!
UG GAN- DI (15)
giving the expression
2l (N1 i
W(J) _i=20 WN—_].)' (detJ) . (16)
© 1978 American Institute of Physics 2043
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! FIG, 1. Graphical represen-
i tation of ¢ and #~*,
o
gli - +
J
b In K K
1 = +. . .} + P + FIG, 2, The generic integral
under consideration,
1 in fl gm
{a} & = —]
2 : i P
|
{b) € . = |W‘n — "W«l
I| “ln
FIG, 3, (a) Representation of the Kronecker symbol;

(b) Representation of the antisymmetric tensor.

K = m-an (= > )

TIG, 4. Some combinatoric identities.

— FIG, 5, Replacing g1 with
the cofactors of 7.

e
2131 ess(N=I}I
- (p+i)yeee(p+N-1)1 ( )

(4]

FIG, 6, Evaluation of the integral, There are (NP)!/[p!(N!)"]
distinct permutations to be summed,

+ PERMUTATIONS

Note that the determinant of a matrix is simply ex-
pressed in terms of the antisymmetric tensor ¢

1

detd = 1o €y e iy Sty Jigip oo s digiy - 1

A graphical notation is useful for carrying out the
derivatives Eq. (4). Directed vertical line segments
correspond to group elements. Upward directed lines
represent factors of g while downward directed lines
represented factors of g'l, as illustrated in Fig. 1. The
ends of these line segments are labeled with the matrix
indices of the respective group elements. The line
direction runs from the first to the second index, as
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FIG, 7, (a) Invariance of the
Kronecker symbol; (b) Invari-
ance of the antisymmetric
tensor,

FIG, 8. Evaluation of the
integral fdgg,; &',

¢

_ S N
—_ (mm ﬁ)
o (T )

_ — ) -1 -1
FIG. 9. The integral [dg gy, &1y Kigsy Tigty-

= =~ 2

0<O\J+ \/)

I N
+ O N\
b
(/r\\+f\f\)

(No +b) )4+ (nb )< ~
= + +
’ <rv\> ° m\)

FIG. 10. Evaluation of the coefficients @ and ». The closed
circles represent =;6,; =N,

shown in the figure. Figure 2 shows how the integral
of Eq. (2) appears in this notation.

We represent the Kronecker delta symbol 6;; with an
undirected line segment connecting the indices 7 and j,
as shown in Fig, 3a. The antisymmetric symbol
€5l reeeriy is represented by a vertex joining N lines from
the indices iy, ...,iy. These N lines are labeled with an
arrow representing the order of the associated indices
in the € symbol, as shown in Fig. 3(b). Finally, when
two line segments are connected, a matrix product is
understood; i.e., the indices associated with the con-
nected ends are summed over. In the evaluation of group
integrals, products of € symbols will often occur. Some
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useful identities involving such products are:

) e iy Sigeeniy =Vl

) ) (N =1! 6.
Gi,llw--v'N-l Ejyill...'tN-l —(N 1). 6”’ (18)
Cidigenaniy S0y oo iy 5 = N = 2)1(8;,0;; ~ 6;65).

These have the simple graphical representation shown
in Fig. 4.

Evaluation of a group integral consists of a replace-
ment of the directed lines in Fig. 2 with vertices and
undirected lines, thus expressing the result in terms
of antisymmetric € and Kronecker 6 symbols. The first
step in this procedure is to convert all directed lines
into a set of lines directed upward. This is accom-
plished using Eq. (8) which is shown graphically in
Fig. 5. (If initially there are more downward lines than
upward ones it would be equivalent and simpler to con-
vert all lines to downward ones.) Once all lines have
the same orientation, we can use Egs. (16) and (17) to
reduce these lines to a sum of terms involving € sym-
bols. Noting that the integral vanishes unless the num-
ber of group lines is a multiple of N, Eq. (16) becomes
graphically Fig. 6. The indicated sum over permuta-
tions is over topologically distinct ways of connecting
the group indices to pairs of € vertices and does not
include mere permutations of group indices coupled to
the same vertex pair or permutations of the vertex
pairs. The resulting sum for Np lines has (Np)! /[p!(N1)]
terms.

Certain identities on the group elements have a sim-
ple graphical representation. For example invariance
of the Kronecker & symbol

gwéjkg;zl:éiz ) (19)
is shown in Fig. 7(a). Invariance of the € symbol

Bi131 81909 " " Eigi g €igaeiiring = Cigrene, iy (20)
is shown in Fig. 7(b). Both of these identities must be

true regardless of other lines present in the diagram,

We conclude this paper with some examples of simple
integrals to illustrate the rules., First consider p=1 in
Fig. 6. This immediately gives

1
ﬁggiljl o 8igiy T N € e rinCigumeaiy (21)
Now consider the integral
Ly = [ degy ait (22)

shown graphically in Fig. 8. In this figure we use

Fig. 5 to make all lines direct upwards, then we use
Fig. 6 for p =1 to eliminate these lines, and we finally
use an identity of Fig. 4 to reduce the result to

1

Iy = N ;041 . (23)

As a final example consider the integral
I={ dg(giljlg;;llgizizg;;zz)- (29)

In Fig. 9 we use Fig. 5 to express I in terms of 2N up-
ward lines. Use of Fig. 6 at this point would give an

2045 J. Math. Phys., Vol. 18, No. 10, October 1978

expression with (2N)! /(21 N1) terms; however, this
evaluation can be simplified with some tricks. First
note that the resulting terms will all have four, an
even number, € vertices both at the top and at the bot-
tom of the diagram. These can be eliminated using iden-
tities similar to Eq. (18) to reduce the terms to sets

of Kronecker 6 symbols connecting separately indices
at the top and at the bottom of the diagram. Further-
more note that a Kronecker & cannot connect the indices
i; and 7, because they can be initially coupled only
through an odd number of € verticles. Using a similar
conclusion on the indices j; and j;, we see that the

final answer for the integral must take the form

I=ad, 6. ,5,, +6 )

i1l Vigly Y igky illgéizllbjlkzé.igkl

+8(6 ), (25)

¢1115¢212511k2512k1 + 6i1126i2116j1k1612k2
where only two independent coefficients are needed
because of the k[ k,l, — k,l,k ], symmetry of the inte-
grand. The coefficients @ and b can now be determined
by multiplying by 0;, and using Fig. 7(a) to reduce the
integral to that in Fig. 8. This sequence of steps is
illustrated in Fig. 10 and leads to the conclusion

1 -1

a= LVT— 1 b= N(Nz — 1) . (26)
Inserting this in Eq. (25) gives the desired integral.
APPENDIX

Here we prove Eq. (13). Defining
)= <det a%') (detd)?, (A1)

we first note that properties of the determinant imply

AN =fgodgn), (A2)

for arbitrary gy and g; in SU(N). By the theorem men-
tioned below Eq. (9), f{J) must be a function only of
detJ. By homogeneity we conclude

AJ) =C(N, i)(det)i ", (A3)

where C(N, 7) will now be determined by a recursion
relation. Setting J;; = 6,;, we have

Y (A4)

C(N, i) = (det _a_> (det)?

Jij =6ij

Writing det(2/3J) in terms of € symbols and isolating
the sum over minors of the last row gives

N D 3 3
C(Na i) = Z\/ JN (eil.-.. * )

. dy_1ed o .
ja 0 i aJl'{l aJN_I',N-l

X (detJ)‘ l].

137655

(A5)

When j=N in this sum we obtain i times C{(N - 1, 1),
while by symmetry all (N - 1) terms for j#N are equal.
Separating the sum over the next to the last row gives

C(N, 1)
0 y Gl
0y w1 ja R

=iC(N=1,i)+ (N =1)
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> (detJ)’

X b—a ————-—a
(il,.-.,iN_Q,j,N-l 3J1,i1 S

aJN—Z,iN_2 Jij =6ij

(AB)

In this sum, when j =N we obtain i times C(N - 2, 7),
when j=N -1 we get no contribution, and when
j<=N-2 we have N - 2 equal terms. Repeating this
process on further rows gives

CIN, 1) =i{CWN =1, + (N=DC(N=2,7)

+(N-DIN=2)CN=3,i)+ -+ (N=1DI1C(1, )}

(A7)

Combining (A7) for N and for N— 1, we see

2046 J. Math. Phys., Vol. 19, No. 10, October 1978

CN,))=(G+N~1)C(N~1,14). (A8)
Using the initial condition C(1,4) =i, we conclude

CW, i) = (i(—tl_";—),”' , (49)

which gives Eq. (13),

'K, Wilson, Phys. Rev, D 10, 2445 (1974); L. P. Kadanoff,
Rev. Mod. Phys. 48, 267,

M. Creutz, “Feynman Rules for Lattice Gauge Theory”
(to be published in Rev. Mod. Phys.).
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Almost-structures and structures in Lorentzian manifolds. I.
Almost-Hermite- and almost-product-(2 x 2)-structures

Roberto Catenacci and Franco Salmistraro

Istituto Fisica Teorica, Pavia, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy
(Received 30 December 1977)

We present a list of the most important almost-structures which have been found of interest in general
relativity, in the null-bivectors formalism. We discusss some of the relevant properties of such almost-
structures and various new or more or less known results. We also present theorems on the relations

between almost-product-structures and almost-Hermitian-structures.

INTRODUCTION

Recently the complex differential geometry on
Hermitian and K&hlerian manifolds has been utilized in
general relativity: the twistor theory and the heaven-
space theory are the best examples (see the review by
Flaherty! and his bibliography). In particular, the
various almost-structures and structures on a differ-
entiable (or analytic) manifold, an old and well-studied
subject of the classical differential geometry, appear
to be very useful when suitably generalized and modi-
fied for the application to the Lorentzian manifold of
the general relativity. In this paper we present some
considerations and facts concerning the almost-struc-
tures (structures will be considered in a forthcoming
paper) in general relativity treated in the formalism of
null bivectors.

Some of the results we present here are more or less
known, but we think that collecting them in a concise
and powerful formalism, well-adapted to general rela-
tivity, will be useful for further investigations.

In the context of this article a space —time will be a
differentiable manifold M with a Lorentzian real valued
metric g of signature (+ - - ~). The definition of the
Riemann and the Weyl tensors are as in the classical
article by Penrose.? We shall, moreover, suppose that
our manifold should be parallelizable so that it admits
global null tetrad fields (see Geroch®).

1. THE COMPLEX BIVECTOR FORMALISM

In this section we briefly recall the complex bivector
formalism introduced by Debever* which is essentially
a modification of the null tetrad formalism of Newmann
and Penrose.® For a more detailed treatment see, e.g.,
Israel,® Pirani,’ Bampi e/ al.®

At each point of space —time a set of complex-valued
2-forms is introduced:

Z(l)zz\/'i e(O)/\ 9(1),

Z®=2V2 6P A 6P, (1.1)
ZD =206 6P -6 6

where, in local coordinates,
69 = dx®
6P = _ i dx®
6% = — m dx® (1.2)
63 =1, dxe, «=0,1,2,3
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n and [ are real null vector fields and m, m are null
complex vector fields. The only nonvanishing scalar
products are

g(l,?l): —g(m,ﬁz):l, (1-3)
and the metric tensor reads
o= g0 g _ g g g (1.4)
= R .

where ® is the symmetrized tensorial product. Let A,
be the vectorial space of complex-valued 2 -forms
(bivectors): we can introduce the following operations
induced by its algebraic structure only:

“Duality”: = : A, XA, — A,

(1.5)

* L. km
Fiy—= Fl=5ie;nF ™,

ijkm
where €;,,. is the usual Levi-Civita tensor; here, and
in the following, Latin indexes (i=0,1,2,3) will denote

the null-tetrad components of a tensor quantity.

“Scalar product” (, ): A,xA,—~C,

(F,G)=4F;GY, (1.6)
which is nonsingular, i.e., (F,G)=0v G=F=0.
“Commutator” [, |1 A, XA, — A,
[F,G]=F, G, 6% n g»+ (1.7)
One can easily see that this operation induces a Lie
algebra structure on the A, space.

“Bracket” { , }: A,xA,—S,,

(1.8)
{F,Gl=-3(F,,G/ +F G eVa6»,

where S, is the space of complex traceless symmetric
tensors of rank 2,

We collect here for later convenience some useful
relations:

vXc T, (M), ¥ F,GeA,:
g(F(X), G(X))

=[F,GIX,x) -{F,G{X,X) +(F, G) g(X, X), (1.9)
({F, F}(X),{F,F}(X)) = (F, F)(F, F) (X, X), (1.10)
F(F(X))= -(F, F)X. (1.11)

Let C, and 53, respectively, be the space of self-dual
(F*=iF) and anti-self-dual (F* = — {F) 2-forms: one can
easily show the following results:
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(@) C3n 63: b
(b) A,=C,®C,;

() if {6'} is a null tedrad as in (1.2), (1.3), (1.4),
then {Z‘*’} as in (1.1) is a base for C, and {Z®} is a
base for C;; we have, moreover,

ZV = _[zW, 7] {(1.12)
01 0

(Z'0,2) =9 = |1 0 0 (1.13)
00 -1

One can identify [due to the nonsingular nature of the
scalar product (1.6)], with the usual isomorphism, C}
and C,, and one can introduce the dual base

{Z(a)}’ and {Zm}-
It turns out that the bases are related by
Zte =iy
Z (= )’aBZ(B)>
and
Vas =¥

We collect here for later convenience some formulas:

(Z(a),z(ﬂ)):o’ (1.14)
[Z(4),Z 4,]=0, (1.15)
{Z(a Zw}t=1Z (011 Zs)}=0. (1.16)

We pass now to the bivectorial analysis. In this forma-

lism the first Cartan structure equations are
dZ ) =" 0 @A Z sy (1.17)

€*# is the Levi-Civita three-dimensional tensor and the
1-forms o, are related to the usual Newman— Penrose®
coefficients by

O.(”:_\/-E(KQ(O)+0,6(1)+p9(2)+76(3)),

0oy = = V2 (760 + 6 + 16 + o), (1.18)
O3y =2(c69 + B8 + 46 +96'),
The second Cartan equations are
Doy = A0 o) = 56000 A 07, (1.19)
where, in vacuum,
Z(ay=1CasZ"” (1.20)

(the electrovacuum case will be treated in the following)
and, in terms of Newman-Penrose quantities:

=2y, ~ 23, 2V 2y,
Cos=| —-2¢, -2y,  —2v2y, (1.21)
V2, -2, -4,
(1,21) follows from the definition
Ciiomn =iCTm=CasZ P Z0). (1.22)
Finally, the Bianchi identities read
Az =g, A L. (1.23)
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We derive now a relation that will be used later. From
the first Cartan equation for Z®’ we have

AZP =g AN ZP 0N 2P =y Z2® (1.24)

where (see Ref. 9)
qb:\/—ﬁ{o(l,zg(o’ +U<1>39(1) '0(2)09(2) ‘°(z>19(3)}- (1.25)

We turn now to the expression for Z, in the electro-
vacuum case. Let F be the electromagnetic 2-form,; it
turns out (see Ref. 10) that if Fe A, and F=F, 7
={F, F} is the electromagnetic energy —momentum
tensor., This can easily be seen by noting that

Ty =s(F F P+ FY,F?) = (=F ,F*+ g, F, F*).
(1.26)
Introducing the notation
Ag=31Z 0 Zs) 1 (1.27)

(and A 2=%{z.,,,Z'®} etc.), we have that VT ¢S,
T— Tﬁ@(i)@e(j): TaéAaB_;
moreover, {A,z! is a base for S, and we can introduce®

the following operation:

(, ) §,x8,—-C,
(1.28)
(Tyw) =704,
With this notation, after some algebra (in which we
have used the usual decomposition of Weyl tensor, see
e.g. Refs. 8, 2), we obtain the required result:

Diar = iCapZ'® + 7,527, (1.29)
where 7 is given by (1.26) and
Tap= Taa- (1.30)

In terms of Newman—Penrose quantities we have (see
Refs. 6, 9)

-2 ¢00 - 2(1)02 2\/_2 ¢01
Tag= _2(3520 ‘20‘)22 2ﬁ¢21 (131)
220, 2V2d, 40,

A digression on complex invariant of Weyl tensor is
now appropriate. Following Penrose,® we can introduce
the following complex quantities, tetrad- and coordi-
nates-invariant:

9= CoC®, (1.32)

F=CC, Y, (1.33)
where C,, is defined in (1.22). In our notation

gzzcuczz —4C,,Cy3 +6(C,)° (1.34)

7= lo(clz)3 +6C,CCh —8C,C5C
- 3cll(cz3)2 - 3C22(C13)2 + 12C12C13C23~ (1.35)

We have the results (see Ref. 2): the space—time is
algebraically special if and only if

gs,gg 2, (1.36)

— 25 ’

the space—time is harmonic type ['if 7=0, ¢+0 and
equianharmonic type I if 7+ 0, ¢=0.
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2. ALMOST-HERMITE-CV-STRUCTURES

In this paragraph we shall adopt the definitions of
Yano. ! An almost-Hermile-cv-stvucluve on (M, g) is a
differentiable tensor field J of rank (1, 1) with the
properties:

JUI(X)N) = -X, (2.1)

for any differentiable vector field on M. We have the
following result:

Theorem 1: A tensor field J is an almost-Hermitian-
cv-structure if and only if it is a 2-form such that

(J,=1, (2.3)

{J,Jt=0 (2.4)

in fact, from (2.1) and (2. 2) one can see that the tensor
of rank (0,2) associated with the tensor J must be anti-
symmetric, and from (1.11) and (1.9) one immediately
has the results (2.3) and (2.4); vice versa, from (1.11)
and (1.9) one can always see that (2.3) and (2.4)
guarantee that (2.1) and (2.2) are satisfied.

From this theorem follows that in a space —time
(i.e., a Lorentzian manifold) there cannot exist a real-
valued almost-Hermitian-structure tensor (as pointed
out by Flaherty) since {F, F}=0 if and only if either
F= Cyor F=C; so F& A(R).

Theovem 2: J=(Z is an almost-Hermite -cv -
structure.

In fact, we can always choose locally a null tetrad as
in (1.2), (1.3), (1.4) and a set of complex valued 2-
forms as in (1,1). Moreover,

(Z(S)’ Z(S)): _ 1,

(: {(3)
[z, 2% =o0.

Theovem 3: There exist a null tetrad such that the
most general almost-Hermite -cv-structure can be
written

J=iZ®,

In fact, (J,J)=1, {J,J}=0 so we can always choose
Z®=_iJ, zV, Z'* as a base for C,. Z* and Z‘? are
determined, up to
Z(l)_, ()ctz(l)
Z(2)__C-aZ(2)7 O’GG:,
by the relations

(Z(U,Z“)):(Z(Z),Z(Z)):O,
(Z(”,Z(Z)):L

iT = [Z(”,Z(Z)].

With an almost-Hermite-cv-structure we can construct
another system of tetrad invariants: Let A=A _Z‘® be
an almost-Hermite-cv-structure in a general null -
tetrad base. We can construct the following tetrad-
invariant quantities:

P=A,A%=1, (2.5)
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O=C,zA%A°, (2.6)

R=CPCrA%A,, 2.7

with C,z as in (1.22). Let us consider the following
invariant:

H=9~2R+30°
with g as in (1.32).

Theovem 4: /=0 if and only if a principal null tetrad
for A coincides with a principal null tetrad for the Weyl
tensor.

(2.8)

In fact, in the tetrad in which

A,=1i83
we have
H= zcuczz-

The 2-form J==J,,6” A 6'° is said to be the Kihler form
of the almost-Hermite -cv-structure. J is called an
alniost -Kihley-cv-sivucture if the Kahler form is closed
(dJ=0).

Theorem 5 (see Ref. 1): A space—time admits an
almost-Kahler-cv-~structure if and only if there exists
a null tetrad in which p=pu=7=7=0.

In fact, let us work in the tetrad in which J=/Z‘*" (see
Theorem 3). From Cartan’s first equation for Z‘* we
have

dJ=idZ = ilo A ZY =gy, » Z9)=0
if and only if 0., A Z'V =0, # Z‘?, that is,
p=pu=T7T=7=0.
An almos!-Tachibana-cr-struciure is an almost-Hermi -
tian-cv-structure with the property:

Sovse Tdue; =00 (2.9)

ac; b

Due to the Lorentzian signature of the metric we have
the following results which are no longer valid for
Riemannian manifolds:

Theovem 6. There exist an almost-Tachibana-cv-
structure if and only if ¢,,,=0,,= 0. Every almost-
Tachibana-cv-structure is an almost-Kihler-cv-
structure.

In fact, in the tetrad in which J= /7" we have that
VAR Zflﬁ’;,,::: 0 if and only is
0, =0.,,=0 sothatdZ* -0,

Theorem T: In an almost-Tachibana space —time #/
= 0. Moreover, an almost-Tachibana space—time must
be type D nonelectrovacuum.

In fact in the tetrad in which J=/Z*’ we have /4
=2C,,Cy, and from Cartan’s second equations and
Theorem % we get

Z=0, Z4,=0, Xy, =dog,.
We have now, from the general expression for Z,

s‘ L (3) N 7B
“‘(otb—*co:BZ _48RZ(a)+EaBZ ’

EpnZP=0 = C,=0,
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EWAZP=0 = C,=0,
T Z=0 = C,;=0,
2 A zP=0 = Cy, =0,

and in electrovacuum space-time these relations imply

C,,=0. Under a conformal transformation of the metric

g~ g
we have

oy QzJaln

b o
Ja Ja 2

so that one can search for conformal transformations
that map a space—time with an almost-Hermite-cv-
structure into another one with more restrictive
properties.

Theovem 8: A space—time with an almost-Hermite -
cv-structure is conformally related to an almost -
Kihler-space —time if and only if di)= 0 where [see
(1.25)]

Y= =2{p6' 0 + 76V _ ¢ ~ g,
In fact, in the usual tetrad
d(§2)) =i(2QdQ A 2P + Q2 dz);
moreover, by (1,24)
AN =i + Q) A 2%,
If dy=0, we can make d(°J)=0 by taking € such that
y= —d(log®?),
and if d(Q%J)=0, it follows that, in the tetrad chosen,

b=~ d(log®?).

Theorvem 9: A vacuum space —time of type II or D is
conformally related to an almost-K&hlerian manifold
(in general with complex metric). [See (1) for type D. ]

In fact, first of all, there exists a tetrad in which
= 'liclzz‘;’),
L= % C122(“ + liczzZ(Z)y
2(3):§C122(3),

and ¢, # 2> =0, From the Bianchi identity for &‘*’
and the first Cartan equation for dZ‘® we have imme-
diately that

d(C,23 2% =0
and, in this tetrad,
J=iZ'® is an almost-Hermite -cv -structure,

Theorem 10: A space—time can be conformally re-
lated to an almost-Tachibana-manifold if and only if it
is of type D.

In fact we have
(@0233), . +(R1232),,=0

(where the | means covariant derivation in the g= Qg
metric) if and only if

o h 2P =0, 0, rZP=0, and dp=0.
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These three conditions are met only in type D space —
time,

Another interesting result can be obtained for vacuum
space —time, Let K* a Killing vector; from Killing equa-
tions K, + K,,,= 0 we have that K,;, € A,. If we define
K=K,,0'” A 6" and K=K ~iK* we have that K< C;
and from the integrability conditions of Killing equa-
tions, dK =0.

In the case in which (K,K)¢0 we can always choose
the tetrad in such a way that

K=B,Z'Y,
and so we have the following Theorem:

Theovem 11: A vacuum space—time with a Killing
vector such that (K,K)#0 is conformally related to an
almost-Kahlerian-manifold.

3. ALMOST-PRODUCT-(2 X 2)-STRUCTURES

An almost-producl-(2 X2)-structure is a differentia-
ble, real valued, /raceless tensor field P of rank (1,1)
such that

P(P(X)) =X, (3.1)
SP(X), P(X)) = g{X, X). (3.2)

We present now some algebraic facts concerning S,,
the space of symmetric, traceless 2-tensors:

Ayi=31Z (s Zis 1S a base for S,
S:Sije(i) 2 9(j):SaBAM§.
S is real if and only if
SOLE:S)?H. (3.3)

Se S, is said to be reducible if there exist F, G ¢ C,; such
that

S={F, G} (3.4)

It can easily be shown [see, e.g., (8)] from the defini-
tions of { , }and (, ) that

S=1{F,G! if and only if

g(S(X), S(XN = we(X,X), acC, (3.5)
and

SUGF, HY(X), \F, H(X)) = (F, F)(H, H) ¢(X, X) (3.6)

Theovem 12: The most general almost product-(2 X2)-
structure can be written

P:{Z(m’ Z(:n:}

In fact, from (3.2) it follows [see (3.5)] that there exist
F,G C, such that

pP={F,G!
From (3.6) and (3.2) we have, moreover, that
(F,F)G,G)=1. 3.7

So {(F,F)+0 and (G, G) # 0 and there exist a tetrad in
which F=F,Z'®, In this tetrad the reality condition
(3.3) gives

G,=G,=0 and Gy=aF,, acR, a#0,
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and (3.7) gives a =+ 1/|F,|?, Moreover, from the
defination of { , } we have that

P={Fz®,(+F,/IF,1)Z%}= +{2®, 72"
Theovem 13: An almost-Hermite-cv -structure induces

an almost-product-(2 x2) -structure,

In fact let J be an almost-Hermite-cv -structure, from
Theorem 1 we have (J,J)=1, Je C, so P={J,J}is an
almost-product-(2 X2) -structure.

Theorem 14: An almost-product-(2 X2)-structure in-
duces an almost-Hermite -cv-structure.

In fact, it follows from Theorem 12 that there exists
a tetrad in which

P:{Z(S)’ 2(3)}
and in this tetrad J=:2® is an almost-Hermite-cv-
structure.

We derive now some results on the relations between
almost-product-(2 x2)-structures and almost-Hermite-
cv-structures.

Theorem 15: An almost-product-(2 X2)-structure is
a Killing tensor if and only if k =0=A=v=0and
] +$: 0.

In fact, in the tetrad in which P={Z®, Z'’} from the
tetrad component of P,;= - Z{3Z'*? we can see that

010 =0(1)1=0(2)2= 0(23= 0,

Ppp=0 Tn2= — 0wz O1ya= 020

Tz = —0(2)1»

Theovem 16: In an almost-Tachibana -space —time the
induced almost-product-(2 X2)-structure is a Killing
tensor.

See Theorems 15 and 6.

An almost-product-(2 X2)-consevvative -structure is

an almost-product-(2 X2)-structure such that
V-P=P¥ =0, (3.8)

By computing the tetrad components of V- P we can
easily show that

Theorem 17: vV« P=0 if and only if
$+9=0,
where ¥ is as in (1.25).
Under a conformal transformation, we have
Py— &P ij?
and we can easily show (this is essentially Lemma II
of Debever’s paper?):

Theovem 18: A space~time can be conformally re-
lated to an almost-product-(2 X2)-conservative -mani-
fold if and only if

d@@+9)=0.

In an interesting paper Debever?® introduces the concept
of pre-Maxwellian structure which turns out to be close-
ly related to both almost Hermitian and product-(2 x2)-
structures. As we are here disregarding the integra -
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bility conditions, we define, following Debever, an
almost-pre-Maxwellian-stvucture as a rveal 2-form F
such that

(F,F)+0, (4.1)
(F, F*) 0, (4.2)
v.{F,F}=0, (4.3)

Theovem 19: There exists an almost-pre-Maxwellian-
structure if and only if the space—time can be con-
formally related to an almost-product-(2 X2)-conserva-
tive-manifold.

In fact, from (4.1) and (4.2) we have that there exists
a tetrad in which

F= (1/\/7)(14(3)2(3) +Z(3) Z(S)),
so that
{F,F}=A,A,P.

In an electrovacuum space —time we have a real 2-form
F such that

d(F —i{F*)=0
and

v-{F,F}=0 [see (1.26)].

Let us consider the electrovacuum space —times with
a non-algebraically -special electromagnetic field:

(F,F)#0, (F,F*)#0.

Theovem 20: An electrovacuum space—time with a
nonspecial electromagnetic field can be conformally
related to an almost-product-(2 X2)-conservative -mani-
fold and to an almost-Kahlerian-manifold.

In fact, in the tetrad in which
F - iF* =F,Z®
we have

V-{F,F}=0 and d(F - iF*)=0
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admit holonomy groups
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An investigation is made of fourteen space-times given by Dubourdieu which admit holonomy groups. It
is shown that, although nine of these space-times admit only trivial vacuum gravitational fields, the
remaining ones are of Bel-Petrov types III and N. Many of the latter metrics can be identified with
known exact solutions of the source-free Einstein equations including the Kerr~Goldberg metric and

certain type III metrics recently studied by the authors.

1. INTRODUCTION

In 1927 Dubourdieu published a pair of papers!'? in
which he gave a list of metrics for four-dimensional
Riemann spaces admitting various types of holonomy
groups. The first paper considered metrics of signature
(--~+), i.e., space—times, and exhibited seventeen
line elements. The second paper was concerned with
enumerating the corresponding positive definite metrics.
Dubourdieu’s work was evidently intended to complete
the lists previously given by Cartan® for two- and three-
dimensional Riemann and Weyl spaces. No details were
given of the calculations except for the reference to
Cartan’s memoir which itself was rather sketchy.

Dubourdieu’s approach is to assume that a Riemannian
space V, (a) admits a line element of the form

ds®=—-(0')% - (0%)% - (6%) + (6°)?,

where the 6% are linearly independent real Pfaffian
forms, and (b) remains invariant under the infinitesimal
generators of the Lorentz group.

Xi2=x,3, = %,0;, Xg=x,35F %0,
X13=%,03— %30, Xpu=X300 T %05,

Xp3= %505 — X305, X3o= X300+ %405,

In these expressions, we have written 3, =09/3x* and
for convenience, we write the coordinate indices as
subscripts, i.e., x* = (x,,x,,%;,%;). Dubourdieu then
classified his results according to the structure of a
pair of groups ¥, and G_. The former is a subgroup of
the Lorentz group since it describes how “les vecteurs
sont transformés par le groupe.” The latter, which
Dubourdieu calls “le groupe d*holonomie,” is known as
the nonhomogeneous holonomy group in current
terminology.*

Dubourdieu’s papers appear to have attracted little
attention and have been largely forgotten until we recent-
ly came across them. Examination of his work reveals
that having performed the lengthy task of deriving his
canonical metrics, Dubourdieu never bothered to de-
termine the types of gravitational fields admited by his
space—times—indeed, the Einstein field equations are
never mentioned in his work. In the present paper, we
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use symbolic algebraic manipulation techniques on a
digital computer to verify Dubourdieu’s results and to
derive the explicit forms of the Einstein field equations
for each metric. We show that Dubourdieu obtained
some metrics which are of interest in problems of
gravitational and electromagnetic radiation, some of
which have been independently rediscovered.®=®

2. DUBOURDIEU’S LIST

In this section, we consider 14 of the 17 metrics given
by Dubourdieu in Ref. 1. We denote these by capital
Latin numerals corresponding essentially to
Dubourdieu’s listing. However, Dubourdieu’s line ele-
ments (I), (II), and (IV) have been omitted since they
are too general to be of interest. We have rewritten
the remaining metrics in a more systematic manner
and have arranged them into four main cases denoted
A, B, C, and D. The variables (t, u, v, w) of his work
are written as (x,, x,, %, ¥;) and we write dx*
={dx,, dx,, dx,, dx,) for simplicity. Unless specified
to the contrary, all functions appearing in the
Dubourdieu metrics are arbitrary functions of the in-
dicated variables.

Case A
This is based on the line elements
ds? = dx,(dx, + A dx, + Bdx, + Qdx,) - C*(dx} + dx3),
1149)

where A, B, C are functions of x,, x,, x, and @
=Qlx,, x,, %,, ¥;). Case A involves the following eight
subcases which are specialization of (III):

A, Bas in (III), Q=k/4(3,A - 3,B)x, + P(x,, x,, X3),

(VD)
where 2=const and C=1;
A, B, C as in (III) and =0; (vin)
A=a(x, %), B=Q=0, C=B(r, x,)(k*+x3)/%
(VIII)
where k=const and 3,a = 4kp%;
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A=B=0, C=1, Q as in (IlI); X)
A, B, Cas in (X) with Q=Q(x,, x;, %,); (x1)
A, B, C as in (X) with Q=R({x,, x,, %s); (X11)
A, B, C, Q as in (XII) with (X111)
Q= x, ¢ (xg) + Dlxy, x5(x, + ax,) — bx,)

where a, b are constants;
A, B, C, as in (X) with &= v(x,, x,). (xv)

Case B

This case contains a single metric, (V), which can be
written in two forms:

ds® = 32 &3 (do? — dx?) — dn? ~ dn? (V-1)
or

ds? =dx? - dx? — x3¥%(dxZ + dx3), (v-2)
where

& ={x,,x,) and ¥ =V (x,,x,).
Case C

This case consists of the metric

ds? =dx2 — dx? = (x, + x,)°¥?(dx? + dx3), (Ix)
where

T =V(x,,x,).
Case D

This case consists of the metric

ds? = &2(dx3 - dx2) - ¥*(dx} + drl, ), (XIV)

where
d=d(x,,%), ¥=U(,,x,,
and the two subcases

ds? = dx® - dx® ~ W2 (dx + dx?), (XVID)

ds? =®2(dx} — dx?) — dxZ - dx3. (XVII)

3. SUMMARY OF RESULTS

None of the 14 metrics listed in Section 2 is ab initio
flat. However, when the vacuum field equations R ;=0
are imposed, many of them become flat space—times.
We will indicate this by saying that the curvature tensor,
R g, Of these metrics is Bel-Petrov type O. The re-
sults of our investigations of the Dubourdieu metrics
are summarized in Table I.

The physically interesting Dubourdieu metrics are
contained in Case A which is characterized by metric
(IT1). This is apparently a mild generalization of the
Kerr—Goldberg metric.?®

ds® = dx,(2dx, + 2U dx, +{V = x,9,Ukdx,) = (@1} + dx),
(KG)

where U="Ulx,, x,, x,) and V=V{x,, x,, x,). To com-
pare (III) with (KG), one must set x,—~ 2k, and x,—~ ¥,

in (III). Then (III) reduces to (KG) upon identifying
A—-2U, B—0, C®—~1, Q— V- x,3,U. The field equa-
tions for (III) are quite unmanageable, and we have yet
to produce an exact solution more general than (KG).
However, we have determined that (III) is of Bel-Petrov
type III,

TABLE I. This table summarizes the results of our investigation of the Dubourdieu metrics. A double entry as for the metrics
(D, (D in the group structure column, indicates that both metrics have the same v, but different inhomogeneous holonomy groups,

Type O denotes a flat space—time.

Metric Group structure Case Bel—Petrov type Comments
1)) g { Gyg Too general to be of interest
I G . . Too general to be of interest
(I11) Y4 Gy A Type I or N Generalized Kerr—Goldberg metric
) 74 { Gg . . Too general to be of interest
W) G, B Type O
VD Y3 Gy Agp Type Il Generalized Kerr—Goldberg metric (less general than IH)
Vi Gq sub Type N A specialization of metric (VI)
(vin Y3 G, Agp Type O Flat subcase of (VII)
(x) Gy C Type O
x) Y3 Gy Agp Type N Harris—Zund metric
(XD Yy G, Agp Type O Flat subcase of (X)
XIn s { Gy Agp Type N Harris—Zund metric
X111) G, Agp Type O Flat subcase of (XI)
X1v) Y2 Gy D Type O Pokhariyal metric
xv) 72 Gy Agp Type O Flat subcase of (XI)
xXVvI) 52} G, Doy Type O Tlat subcase of (XIV)
XVID Y1 Gs Dy Type O Flat subcase of (XIV)
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The metric (VI) is a subcase of (III) which also gen-
eralizes (KG). It seems likely that (VI) is the most gen-
eral Case A metric which is reasonable to consider;
however, we again have not yet been able to produce an
exact solution of the field equations which is not (KG).
Metric (VI) is of Bel-Petrov type Iil.

Metric (VII) is a type N specialization of (III) which
essentially corresponds to a plane wave metric in a
noncanonical coordinate system. Metric (VIII) is a
further specialization of (VII) which is of type O. In
Sec. 4, our analyses are illustrated using metrics
(VII) and (VIII).

Metries (X)—(XIII) and (XV) are specializations of
(VI) with (XI), (XIiI), and (XV) of type O and (X) and
(XII) of type N. The two type N metrics are special
cases of a type IIIl metric recently studied by the au-
thors.” This metric, which is a subcase of (III) but not
of (VI), is of the form

ds?=F(xy, X, Xy, X5)dxZ = 2dx,dx,

— expxyR (x) [{ Pl )dn? + QUxp)dxZ}, (HZ)

where F, P, @, and R are arbitrary functions subject
only to the restrictions imposed by the field equations.
The metric (HZ) reduces to (X) upon setting P=Q =1,
R =0, interchanging the variables x, and x,, and identi-
fying F(-x3/2, x,, x,, %) with Q{x,, x,, x,, x,). Metric
(HZ) also includes two types III metrics studied by the
authors® as well as some special cases obtained by
Petrov.®

The remaining metrics consititute cases B, C, and
D, and all are of type O, Metric (XIV) has recently
been discussed by Pokhariyal® and appears to be of in-
terest geometrically since it is a class two product
spacetime, However, Pokhariyal does not seem to re-
quire that it satisfy any particular field equations, and
if R,3=0, then (XIV) is type O.

4. EXAMPLES

In this section, we utilize metric (VII) and its sub-
case (VIII) to illustrate our technique. The field equa-
tions for (VII) reduce to

AlnC=0, (4.1)

~2(3,4 = 3,B)3,InC + 8,,A - 3,,B-4C23,,InC=0,
“4.2)
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2(8A—-9,B)3,InC-08,,A+3,B=4C23,,InC=0, (4.3)
~ 29,54 —20,,B—-8C3,,C-9,B3,A/C?+5(3,4/C)?

+3(8,B/AF =0, (4.4)

where A=29,, +9,,. A special solution may be obtained
by setting A=A(x,) and B= B(x;) whereupon R ;=0
reduces to merely

AlnC=0, 9,4nC=0, 3,1lnC=0, 3,,C=0.

It is not difficult to verify that these equations are
satisfied by

C=(kyx, +ky) expw(x,,x,),

where ky, k, are constants and w(x, x,) is a solution of
Aw =0, The functions A(x,) and B(x,) are not restricted
by the field equations. This solution is Bel-Petrov type
N,

For the metric VIII, the nonvanishing components of
the Riemann tensor are

Ripp=- g2k +x3 )Ru’

B p13 == Rag,

R g2 =Ry3,

R1313 =Rygp3 =~ 2R33/32 (B% + x§) .

Thus, if R, ,=0, then R _,,, =0 and the space—time is
of type O. Note that when the restrictions of (VII) are
applied, (4.4) yields the condition 3,o = 4% stated by
Dubourdieu.
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Continuum calculus. lll. Skorohod’s weak distributions in
the evaluation of a class of Feynman path integrals

L. L. Lee

The School C.E.M.S., University of Oklahoma, Norman, Oklahoma 73019
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Path integrals for functionals are studied from the point of view of the continuum calculus proposed earlier
[7. Math. Phys. 17, 1988 (1976)]. The weak distributions of Skorohod in an infinite-dimensional Hilbert
space and the p-integral method of continuum calculus are employed to derive a formula for the
functional integral, which is in turn evaluated through a natural extension of the weak distribution
expression. Generalizations are made to measures with density functions in the function space. As a
demonstration, the formula is tested against the polynomial functionals studied by Friedrichs, and valid

results are obtained for the general case.

I. INTRODUCTION

Since Feynman' introduced his alternative formula-
tion of quantum mechanics in terms of a propagator
which was a functional integral, this mathematical de-

vice has found applications in many branches of physics.

Quantum field theory proved to be a fertile ground for
the application of the functional integral method.?
Classical statistical mechanies®* can also be analyzed
in terms of functional integrals in the approach of mole-
cular fields. Hopf’s® turbulence theory is another clas-
sical example of the utility of this method.®" Applica-
tions are also made in laser transmission,® polymer
solution theory,® and thermodynamics of irreversible
processes.'® On the other hand the mathematical theory
has not kept equal pace. Efforts!'~!3 have been made to
put the integral on a rigorous basis. One of the funda-
mental difficulties has been the nonexistence of a gen-
eral translation-invariant Lebesgue measure, in the
conventional measure theory, for an infinite dimen-
sional space.!! Practical calculation formulas have been
proposed!*!% for physical problems. However, com-
pared to what is needed in the solution of realistic
problems (e.g., turbulence), the available meauns re-
main far from adequate.

In a series of papers!'®!’ (hereafter referred to as I
and II) we put forward an operational calculus with the
objective of treating this problem from a new perspec-
tive. We succeeded in characteriziag a class of ex-~
ponential functional integrals usually encountered in the
Feyanman! formulation. Applications wers made lo
physics and probability theory, and valid results were
obtained.!®

In this paper, we intend to enlarge the scope of
functionals that can be treated by the continuum cal-
culus method. Let B be a Banach space over complex
field which is also Hausdorff in the norm topology. C?
is the set of functions (forms), v, from B to C, C being
the complex numbers. We construct a complex Banach
algebra, A, out of C?, by the usual method of com-
pletion, including all the ideal elements. A, is Haus-
dorff. Let (B,S,, ) be a measure space on B, and
(Ag,S,,m) be a measure space on Ay, 1 and m being
the measures on the o-algebras, S, and §,, of the
spaces B and Ay, respectively. We propose to investi-
gate the integral of a class of functionals, ¢: A4, —~ C,
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given by the general formula,
oly]=[ ndNa(gly(®), ECB, a:B~C

for some complex-valued function, g:C — C. A pre-
liminary study has been made in Paper I, using a dif-
ferential homotopy approach. There we found that a
uniqueness theorem was needed. Here we shall proceed
with a different method, i.e., the integration of weak
distributions of Skorohod,!! and obtain equivalent re-
sults without incurring the uniqueness problem.

(1.1)

In Sec. II we apply the weak distribution integration
method to a sample functional, y[y]. In Sec. IiI, we
rework the problem using the p-integral method. A
functional integral is obtained that is consistent with
the weak distribution result. This enables us to gene-
ralize to a formal definition of a functional integral of
the functionals of type (1.1). As further demonstration,
in Sec. IV we recalculate the integrals for the poly-
nomial functionals of Friedrichs!® with a Gaussian
measure. The outcome is also consistent with that
from the differential homotopy approach.!®

To make this paper reasonably self-contained, we
summarize some of the major results obtained pre-
viously .87, We have proposed an operational calculus
with two operations, the » differentiation, denoted by
R/R¢ (+), and the p integration, Pdt> (-). Heuristically
speaking, the » (i.e., vational) differentiation when
applied to a function f(¢), f: B~ C, studies the instan-
taneous ratio of f(t) in the neighborhood of the point ¢,
just as in ordinary differentiation, d/d! is a measure of
the instantaneous difference of f. In formula form, the
v derivative of f(#), denoted by Rf/R/, at the point /
which is in the interior of the support of f, is a multi-
plicative function, f*(-) [i.e., fX*as+pr) =fx(s)f Hr),
VYo ,3= C and v,s < B], such that for every e >0 it gives

[ F{t+0)=F(O)FFd) | <€ 1.2)

whenever bl <6>0. It is related to the ordinary de-
rivative through a correspondence theorem:

ﬁR/- (t)=exp [{% lnf(t)].

This theorem immediately generalizes the » derivative
to an equal level with differential derivatives. The p
{i.e., potential) integral is then obtained as the primi-

(1.3)
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tive of r differentiation, in the same sense that the
oridinary integral is the primitive of differentiation.
It is related to the ordinary integral by

Ppud) > f(t)=expl [_n(@)nf(t)], ECB.

The functional integral is then characterized as the
result of the interaction between the p integral and the
ordinary N-fold (limit N — =) integral. In operator form,

Ppuld)> [ mldy(t) () 1.5)
=exp{[_n@)n[ [ m(@y®) ()}, ECB, FCA,.

This formula was successfully applied to functionals of
the exponential type!®

(1.4)

dyl=expl [ uldtigl(®)], ECB, g:C—c, (1.6
yielding the integral
P uldt) > me(dy(t)) ~yly]
=expf_u(an)n[ [ m(dy(t)) expgly())]. )

For details and applications, see Paper I.1¢

Il. INTEGRATION WITH RESPECT TO A WEAK
DISTRIBUTION

In this section, we adopt as the basis of development
the concept of weak distribution as given by Skorohod, !
The language is of Hilbert spaces, although some of
the results can be extended to more general spaces.
Let X be a complex separable (Hausdorff) Hilbert space
and B* the o-algebra of measurable sets of X. Let L
be a finite dimensional subspace of X under the action
of the projection operator P;. If m is some normalized
measure on (X,B*), we define the measure m, on the
o-algebra B% of L as,

m, A =m({xec X: P,xc A}), AcB}. @.1)

The family of measures m,, defined on all finite-di-
mensional subspaces L of X and satisfying a compati-
bility condition (see e.g., Skorohod!!), is called a

weak distvibution, m, . It has been shown that in order
that m, corresponds uniquely to a measure m on (X, B*),
the Minlos~Sazonov theorem will have to be satisfied.!
We shall not investigate this point here. Rather we
analyze the interaction of the continuum calculus with
the use of a weak distribution in the following.

For the functional ¢[y] defined in (1.1), we construct
a cylinder functional, ¢y, under the projection P,
according to Friedrichs,!®

d)N[PNy] = ¢[PN)’], vye X.

In order to render the developments more trans-
parent, we consider a simple case. Let U be the real
unit interval, [0,1], and RY the collection of all L?-
integrable functions from U to R, R being the real
number field. The Hilbert space X is then constructed
as usual from RY when all the ideal elements of RV are
included. The c-algebra B} on U consists of all the
Borel sets of [0,1]; and the measure u on B}, is the
Borel measure. The inner product is defined as

(y,z)E‘]‘U wdty(®z(), v,ze X,

For illustration, we define a simple functional on X as

(2.2)

2.3)
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Yy]= fv pldta Oy, (2.4)

where o(t) is some complex valued measurable weight
on U. Under the projection operator P,, yN[y] is given
by

N
YN[PNy]=§1 Aay7, (2.5)

where Pyy=(y,,...,¥y), and y, =y(¢,), 0=¢,<t, <
<t S E < f <o <ty=1, and 8, =u({t,_,,4]). We
can suppress 4, in later development by redefining the
unit length for equal distance intervals. We are
interested in the functional integral I, of y[v]:

Llvl=f midy) byl Fox. 2.6)

Instead, we consider first the integration of the cylinder
functional yy, with respect to a weak distribution m,, as
defined in (2.1):

Lilyyl= [ m(dy) v, [Pyyl.
When Fubini’s theorem is applicable, we have
IN[YN]:‘[ ml(d\"l) "'“{V WlN(d_VN)'YN(\',, "',_\’N)- (28)
Fy Fy

As to the compatibility conditions, see Friedrichs.!®
The subspace measures m_ are induced by m,, which
are ordinarily taken to be Gaussian, e.g.,

m;(dy;) = exp(- 328,V A, /2ndy, .

Here we simply choose the m,’s as Borel measures on
R. (This choice is to be viewed from the perspective of
later developments, since we are not dealing with an
ordinary measure theory here.'?) Let F, =[0,z,],¥ i,

2.7

2.9)

¥
IN[VN] :f:ldyl f:NdyN (iEﬂaiy’i')

N
—— Zl e ‘ZN
=20, [Ty, [ Ny
zrnl ¥V n+l
= b S ez + o z _2__2 ove z + s
S U S At T eI T A

Zn-tl
+(,1»1\,l:zl"-zb,_l _M_n+1]

¥ [ z?
:(jljlz") (%’aiﬁ—l> (2.10)

A moment’s reflection is needed here. It has been the
hope that as N—« (&, — 0,V i), the integral I [y,]
would converge under suitable conditions to the func-
tional integral [,[y] (Friedrichs'®). Although many past
works in physical applications have made!*'!® this as-
sumption, in the present work we shall study aspects
of this problem from a new starting point. Before we
embark on a continuum approach, we rewrite {2.10)
as:
1 ol ¥ 25
Llyyl= _Ela,-(jll fo dv;) exp(lny?)

Pops

2 §oay N ;
z 1czi(jlljo d_\rj)exp(kzzléikln‘\k)

1

.
2 e, (J‘Ifi1 fa "dy, exp(d,;Inv1))

i=1

N N 44 2.11)
4 V4 (
= ,-=1' ai‘ ,L[l z,; exXp (6“ ln——’—n 1),
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= ﬁ, )(E ‘n+1)

In the equality 2 of the above equation, we introduced
an expression containing the Kronecker delta, §,,, with
a purpose. Equality 4 will also prove to be important
in future developments. As N goes to infinity, the
summation term in (2.11) passes naturally to a Riemann
integral, while the infinite product will pose a problem.
It is precisely at this point that the continuum integral
will make a contribution. We note also that since we
admit complex numbers in the integrand, the introduc-
tion of the logarithmic function is justified as long as
the resulting expression makes sense.

IN. THE FUNCTIONAL INTEGRAL

In the previous section, we employed the integration
with respect to a weak distribution to study the integral
of a sample functional y. The resulting expression
involves an N product (ITY,y,). The p-integral method
developed in the continuum calculus is applicable to
infinite products. Thus we apply the method in this
section. As in Paper I,'® the p-integral operator,
Pu(dt)> () when applied to an N-fold integral (N — )
can be written in operator form as:

Py u(de) > me(dy (£))()

T m,(dy, ) 5,
Fy

= lim
N - o
Vi (B;)=0

(3.1)

where E; are subsets of E due to the partition P, 1'%

To prepare for the interaction, we write [y] as
:_[U,u(dr)a (r)y(r)n
= [ nl@r)a) exp[ nianolr, iny (o).
Application of (3.1) to (3.2) now takes the form,
Pyu(@n)> [ mldy(®) - +ly]
:'fuu(dr)a/ (r) - expfyu.(dt)
X In[ fpm (dy () expd{r,t) Iny($)7].

(3.2)

(3.3}
This corresponds to equality 3 in the weak distribution
development of (2.11). To evaluate the inner integral,
)
[ ]Ef: ' m{dy(t)) expd(r, £) Iny ()", (3.4)

for F=[0,z(¢)], m being the Borel measure, we refer
to equality 4 of (2.11) and infer the corresponding re-
sults in the continuum case as

Jlz]=2() exp [ﬁ(r fn z(t)l] (3.5)
Therefore, (3.3) becomes
[u(dr)oz(r)exp[ uldt) 1n[z(t)exp6(r t)lnz(t)l]
:_[Uu(dr)(y (r)exp [(f u(dt)lnz(t))+ an(r)l ]
:[expfuu(dt)lnz(t [f u(dr)a(r)z(r) ] (3.6)

As expected, we obtain an ordinary integral for the
original functional and a p integral representing the
limit of the infinite product. For appropriate limits of
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integration, both integrals in (3.6) exist, and we pro-
ceed to define the functional integral of y to be

L v]=lexp[ pld)inz(®)] [f #(dr)a‘(r)z(r) ] 3.7

We take note of the integral (3.5) and generalize for
arbitrary functions, g(y), g:R— C, that admit a Taylor
series expansion (details omitted) to obtain

Theorem 3.1 Evaluation of the Jintegral: Let g be
a function from R to C whose primitive exists and is
denoted by G, so that dG/dy=g. If g is in class C”
(possessing continuous derivatives of all orders) and
admits a Taylor expansion, then the J integral with
appropriate limits, F=[0,z(}], and Borel measure
m is
J:me(dy(t)) expd(r, )ing(y (1)
= [*“ dy(t)expd(r, )ngly (1))
= z(t{expb(r, HIn[G(z(1))/z(H)]}.

It is plausible that relation (3.8) also holds for more
general functions, g(y). This will be left for a future
study. Another direction of generalization is the cal-
culation for more general measures. As in probability
theory, for measures m, with a density function p(y),
m{dy) =ply)dy, or p(y) being the Radon—Nikodym de-
rivative®® of m with respect to the Borel measure, the
above relation can be generalized by a simple trans-
formation of variables.

(3.8)

Let P(y) be the integral (or primitive) of p(y),
dP(y)/dy =pl(y), (if it exists), P corresponds to m in
the Stieltjes sense. Suppose that the mapping x = P(y)
is bijective; there exists an inverse function, P!, such
that y = P-(x). When this is substituted into the function
2(y), we have

h(x)= g(P-1(x)). (3.9)
The J integral is then
J= me.(dy(t)) expb{r, ) Ing(y(7))
= [ ay(0ply (1) expotr, 1) Ing(y (1))
= fof dx(t) expd(r, 1) Ink(x(5)) . (3.10)

This expression is of the form (3.8); therefore, we
have

Theorem 3.2: J Integral for a general measure: For
the measure m described above, the Jintegral in the
expression

J= me(dy(t)) expd(r, £) Ing(y(1)) (3.11)
is given by
J=%(H) expd(r, 1) In Ex((tt)))
— (3.12)
— pl= HPEF@))
=P@F(#) expd(r, ) In PG
where
(1) = foidx(t)h(x(t))
= [T dy (Do (gl (1). 3.13)
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if the indicated integrals exist. In the above expression,
t is fixed during integration.

We remark that in the above development we have
restricted y{f) to be a real valued function (i.e., 4,
is a real Banach algebra) so that no integration in the
complex plane was involved. To simplify the deriva-
tion, homogeneous lower limits were used. For the
Banach algebra Ay of real functions, we then propose

Definition 3.1: The functional integral of ¢[y]: Let
A, be a real Banach algebra, and ¢[y] the functional
from Ay into C, as given by (1.1), its integral, I[¢],
onaset FC Ay, is given by

Ll¢l=Pyulat) > me (av(n) - (fEu(dV)a (Pglv())
= [ wtan)a )fexp [ plainf miay()

E

xexpls (v, £) Ing(y ()]} (3.14)
The treatment of the innermost integral
J= [ mldy(#)) explo(r,t) Ingly ()] (3.15)
F

is according to Theorem 3.2, whenever the indicated
integrals exist.

With this definition at hand, a host of interesting ex-
amples can be worked out, since the formula given is
of quite general applicability. In order to demonstrate
its validity, we test the definition against a class of
polynomial functionals, whose integrals are known.!®

IV. THE POLYNOMIAL FUNCTIONALS

To test the formulas given in Sec. III, we examine
the polynomial functionals studied by Friedrichs.!®
Without loss of generality, we consider a completely
diagonalized »-ics,

E[)"] = .,{01 ds l'(S )_\‘ (s)

for y:[0,1]—~R. Friedrichs!® took, for #, the measure
in the function space A, to be Gaussian. For even num-
bers of », ¥=2n , n an integer, the problem is similar
to the y functional considered previously, except that
here we integrate with respect to a Gaussian measure.
According to Definition 3.1, the functional integral
takes the form

Llt]=Pyud) > | mdv(0)- &y
= [Mds,(s) exp [ drin[" dv(t) exp[ - by (1°]

4.1)

xexp[6(s, 1) Iny(H)7], 4.2)

For the innermost integral

J= [ av(t) exp[~ 4y (1] exp[o(s, 1) lny(t)] 4.3)
we apply (3.12). Here p(yv) =exp(-3y?). Therefore,
P(y) is the error function

P() = [ dz exp(=22/2) =VT/Z eri(F/V2). 4.4)
P(y) is then one-to-one, and the inverse exists

x=P{y)=V1/2erf(y/V2), v=FP'(x). 4.5)
The Jintegral is then, by (3.12),
J= E-I'llr;l/?“ 2 f: dx(t) exp[6(v, t} InP-1(x)"]

:%EPZP@) exp [6(r,l)lanzé?»], (4.6)
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where
lim P(y) :f: dz exp(— 3228 =V1/2 4.7)
and
lim H(P(y)) :fomdz exp(- 322)z7
g
=[(2n! /n12m1)Vor (4.8)

Substitution of (4.7) and (4.8) into (4.6), and then (4.6)
into (4.2) gives

If[EI: folds lr(s) expfoldt ln{m—exp [6 (’V, f) n (27’1)‘]}

ni2n
= (m>f ds1i,(s).

nl2n o

(4.9)

Except for a normalization constant v27, the result

is identical to the solution given by Friedrichs.!® For
¥ =2, the formula reduces to the case studied in Paper
I'® by the differential homotopy approach

g[y]:folds lz(s)y(S)z,

1 (4.10)
LIE]=V27 Trly =27 [ ds1,(s),

where Tr is the trace. Same results are obtained.

We remark that the formalism given by (3.14) is
valid for general measures, i.e., it is independent of
the Gaussian measure, and is also applicable to finite
limits of integration in the function space A,.

V. CONCLUDING REMARKS

In a series of studies,'®'!” we have applied the method
of continuum calculus to the formulation of the func-
tional integrals, in closed form, for two classes of
representation of functionals:

olv]= [ nida (gl (1) (5.1)

and

dvl=exp|_uldNegl(r).
These representations encompass a wide variety of
functionals of interest in applications. Other types of
functionals can, in principle, be similarly analyzed,
although some recalcitrant cases may be expected.
Type (5.2) functionals, which are relatively easy to
treat in the present methodology, are, in fact, en-
countered most frequently in physical applications.®
Type (5.1) functionals require more care and are
analyzed here in view of Skorohod’s weak distributions.
The solution is given by (3.14). Due to the novelty of
the subject, more mathematical elaboration and rigor
will be required to assure the existence of the proposed
formulas under suitable measure theoretical and topo-
logical conditions.!'=13 It is interesting to note that the
idea of p integration, one branch of the continnum
calculus, is independently arrived at in the product
integral formulation of Dollard and Friedman.?

(5.2)

Another less explored but equally important area of
investigation is the subject of functional differential
equations. Donsker and Lions?? have given an interesting
study. Consider the turbulence theory of Hopf,® the
characteristic functional of the probability distribution
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of a flow field satisfies the equation,

2% ,_ 0 . ]
— = Z (k' + —
ot fdk oz, (k") [ﬁk (B R DR bz,(k")

. 6
_ufdk,kl z‘(k)—-—ézi(k) :

(5.3)

The solution of this equation for a general flow problem
holds promise to the progress of one important branch
of physics.” We shall have occasion to report a study
on this in the future.
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Symmetries of the 3j coefficient
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An explicit form of the five Regge symmetries of the 3 coefficient is given. It is shown that a set of six
3F5(1) hypergeometric functions is necessary and sufficient to account for the 72 symmetries of the 3j
coefficient, each accounting for 12 symmetries. The ecight-element group, recently discussed by
Lockwood, accounts for only eight symmetries of the 3j coefficient.

The 3j coefficient is given in Regge’s’ notation as follows:

. . . j2+j3_j1 j3+j1"j2 j1+j2"j3
h J2 I3 . ) ) = (3J). (1)
=|li-m Ja~m, Jg— Mg

m, m, M . . .
SRR Jytmy Ja T my Jatmy

The symmetries of the 3j coefficient have been discussed by Regge! in terms of the column and row permutations of
the above square symbol,

The 12-element group of physical symmetries of the 3j coeifficient consists of
(a) six permutations of three angular momenta and
(b) six permutations of the space reflection.

These correspond to the column permutations and the exchange of the lowest rows of the square symbol,
respectively.

The symmetry operation on the square symbhol that the rows can be exchanged with columns® implies the following
symmetry operation on the 3j coefficient:

7. (jz - mz) + (j3 - Wls) (jz + le) + 03 + WZ;;)
- 2 2
(3J)=R1= .
s . (73—‘":;)— (jz—ma) (73+Vr13)— (jz+VrZz) )
]2—]3 2 2

The four possible ways of interchanging the rows of the square symbol! (left after the space reflection) imply the
following symmetry operation on the 3j coefficient

Jetja—mu J1tja=mz Jitje—my
2 2 2
(8J)=R2= , (3)
Ul—m1)+01‘jz‘j3) (j2—m2)+(7'2‘].1'].3) Us‘m3)+(73-_f1‘j2)
2 2 2
j2+]’3+m1 j1+j3+m2 j1+j2+m;3
2 2 2
(3J)=R3= s (4)
Uatjs=i)=Gaitm) Gitjs=~ia) = Gatma) Gitia—jo) = (g + mg)
\ 2 2 2
jetjs—m Jitiz—=m, Jitje—ms
(30)=R4 =(~ 1) 2 2 2 )
(jz+j3'j1)_(71‘m1) (i1+j3—j2)‘(72-m2) (71+j2-j3)—(js_m3z ’
2 2 2
and . . . . . .
Jatjztm, Sitjstmg Jrtja Fmy
2 2 2
(3J)=R5 = (- 1) , (6)
Grtma) + Gi—ja=7s) Uz + ma) + Go = j1 — ja) U3+m3)+03‘j1‘j2)
2 2 2

where j, +j, +j;=J. Equations (2)—(6) give an explicit form of the Regge symmetries in which the j°s and m’s of the
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3j coefficient will be replaced by algebraic expressions involving the original j°s and m’s. The five Regge sym-
metries are named as R1, R2, R3, R4, and R5, respectively.

The study of the Regge symmetries of the 3j coefficient in the form given above, makes the 72 symmetries more
apparent. For example, the superposition of one of the symmetries of type (b), i.e., changing m,, m,, and m, to
their negative values, on R1, will only interchange the second and third columns of R1. This symmetry is also ob-
tained by the superposition of a symmetry of type (a) on R1, It is easy to see that the superposition of symmetries
of type (b) on R2, R3, R4, and R5 will give rise to the set of symmetries which are also obtained by the super-
position of the symmetries of type (a) on R2—R5. Thus, only 47 distinct symmetries can be obtained by the super-
position of symmetries of type (a) and type (b) on the five Regge symmetries. But a careful study of the superposi-
tion of the symmetries of type (a) and type (b) on R1 and vice-versa yields 25 symmetries which are distinct from
each other and distinct from the 47 obtained above. Exhausting all the possible combinations of symmetries of
type (a}, type (b}, and the five Regge symmetries, one can verify that there are only 72 distinct symmetries of the
3j coefficient.

The series representation® for the 37 coefficient can be put in the form

_1)adzm3 3 3 1/2 3 3 -1
(3J>:5<m1+m2+m3)‘(Jljl)!]w[g gl(ﬁ,.-a,,n] ;(-1»[3151:1(3,.-01@_%)!] , 0

where B, =j, +j, =js By=j, —my, By=j, tm,, and &, =0, &,=j,—j,— m,, 6,=j, ~j, +m,. Let B, be the minimum of
the #’s and o, be the maximum of the o’s. The number of terms in the above series representation, Eq. (7), is
determined from # =B, — a,. It is easy to see that n takes nine different values as the 3j coefficient goes through its
72 symmetries.

By successively making the substitution f—a,=s, £=1,2,3, and 8;,-t=s,i=1,2,3, in Eq. (7), the series
representation for the 3 coefficient can be rearranged®* into the generalized hypergeometric series with unit argu-
ment, viz., ;F, (ABC;DE;1),

The summation over f in Eq. (7) will be replaced by

(-1)F
r{1-A)r1-B8ra-orwo

TE) sF,(ABC; DE; 1). ®)

The parameters of the ,F,(1) series for the substitution ¢ - a,=s, k=1,2,3, are given below:

A=-(j,+j,=34)), B=={(,-m), C==(j,+my,), D=j,=jy+m,+1, E=j,~j, ~m,+1, P=a,=q, 9)

A==(+m), B==(+jy=~j), C=-{js—my), D=j,—j,—m,+1, E=j,—j,+m,+1, P=a,=aq,, (10)
and

A== (j=my), B==(jy+my), C==(jy+j;=j), D=j,—j,+m,+1, E=j ~j,~my+1, P=o0,=q,. (11)

The parameters of the ,F,(1) series for the substitution B,-t=s,i=1,2,3, are given below:

A==(j, *jz=js)s B==(j,*m), C=={(j,=m,), D=j,—j,-m, +1, E=j,~j+my+1, P=g =48, (12)

A:_(jl_ml)’ B=~(j,+js=J,), C==(jz+my), D=j~jytm+1, E=j,~j=~my+1, P =8,=p, (13)
and

A:-—(j2+m2), B=~{j,~m,), C==(j,+i,~1), D=j ~js—m,+1, E=j ~j,+m,+1, P=p,=p,. (14)

The series representation, Eq. (1) of Ref. 2, corresponds to the ,F,(1) series given by Eq. (9). Since the ,F,(1)S
correspond to the minimum of the #’s or to the maximum of the a’s, it is easy to see that the numerator parameters
are all negative and the denominator parameters are positive, The upper limit of the summation index in the
1F,(1)S, n is given by the minimum of the negative value of the numerator parameters. Choosing any one of the
sF5(1) series, say, that given by Eq. (9), and associating the 3j coefficient (fnllinzz,{lg) with the identity permutation of
parameters, viz., ,F,(ABC;DE; 1), it is shown that the 3! permutations of the three numerator parameters together
with the two permutations of the denominator parameters will account for 12 symmetries of the 3j coefficient. Each
of the six ,7,(1)S will account for 12 symmetries of the 3j coefficient. It is straightforward to list the symmetries
accounted to by a single ,F,(1) series. As an illustration of the proof, the list of 12 symmetries accounted to by the
permutations of parameters of the ,F,(1) series, given by Eq. (9), is given in Table I.

The advantage of describing the symmetries of the 3j coefficient in terms of permutations of parameters of
3F5(1)S is that the absolute symmetries can be clearly separated from those carrying the phase factors. The L F,(1)S
given by Eqgs. (9}, (10), and (11) account for the 36 absolute symmetries, each accounting for 12 of them. The
F2(1)S given by Eqs. (12), (13), and (14) account for the 36 symmetries which carry the phase factor, each account-
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ing for 12 of them. Thus the set of six ,F,(1)S is necessary and sufficient to account for the 72 symmetries of the

3j coefficient.

Since the number of terms in the ,F,(1) series representation for the 3j coefficient takes nine possible values,
there should be nine sets of canonical parameters?® of the 3j coefficient: (n;; a;, b;; ¢,y d;; i=1,9). It is elementary
to calculate the nine sets of canonical parameters. The 72 symmetries can be partitioned into nine sets of eight each
depending on the number of terms in the ,F,(1)S for the 3j coefficient. The list of eight symmetries accounted to by

the ,F,(1) series when it has j, +j, — j; +1 number of terms is given in Table II.

TABLE I. The list of 12 symmetries accounted to by the permutations of parameters of ;F, (1) series given by Eq. (9).

]1 Jz Js J2
ms -m

o ds
o Ty -y

Jatrds—my tiz—ms
2 2

Zl + 22 — 3
(d3 —mg) + g — g —a)
2

Gr=m)+ Uy ~da=j3)  (g—ma)+ (fo—dy —jy)
2 2

N~—

iy + 3+ m s s
lLiLZ z Jat+jatny
2

jL+jatms
2
(ja+mz)+ (Js —Jji = ja)

Gatm+ Ua=js=ds)  Gprmd+ Gy —ja—ja)
9 2

Iitjetmg Jatigrm
2 2

Jatjs—my Iitjs—my
2 2

irrig=m;

(o +ds—ji) — G +my)
2

2

(ja+7s —]1) = Gy =my)

]1 + 23 + ¥ty
2
(s +31 —-]z) = (ja +my) (it + g = da) = (g + m23)
2

(1 +ia=jg) = (Ga—mg) Lz +jy—ja) = (o —ma)
2 2

Jy (Jotma) + (g +mrg) (2= mg) + (jy —my)
2 2

L. (o + 11g) = (3 + m3) (jo —my) — (3 ~my)

J3—72 P 2

. (j3 —m3) + (ji —my) (ja+ma) + (g + my)

T2 P 9

. (1 ~myq) = (js —m3) (jy+ my) = (s + mg)

J3—h ) 2

(jp + mg) + (dg +mgy)
2

(j3+ mg) — (Gp+ )
2

2

(js —m3) = {jy —my)
2

<(11' —my) + (j3 ~ mg)

i (Jo = mip) + (3 —my)

2
. (js = m3) = (jo—my)
iy =73 J 3 >

(jo —ma) + (G —my)
2

(g +my) -+ (j3 + mg)

J2 2

Ji=73 Uyrmg) = Gy ) )E G+ o)

(g —my) = (g —my) >
2

(g = mg) + (Jo = m29)
2

(o= mz) (jy —my)

(o +m19) + (j1 +my)
2

(g +my) = (o +mp)
2

(g +my) + (jo + my) .

3 %
jo+mg) = (1 +my) ..
(Jo +my 2]1 i,
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TABLE II. The list of eight symmetries accounted to by the
4Fy(1) series when it has jj +j, — j; +1 number of terms,

]1 2 73 J2 Jt 73
mi n, 7773 —my, —my —my

(g mo) + (i +my) (J2 = mg) + (i —mmy)
2 2

J3

(g +my) — (o + my) (jg = mg) = (jo = m)
2 2

J2—Js

(o=—mo) + (g =mg) (gt my)+ (i1 + my)
2 2

3

(Go=mo) = (g —my)  (at+mg) = (i +my)
2 2

Ji— i

(j2 + ma) + (G + my) .
2 73
(_71+mi)-é(]2+m2) ir =1y
(o + my) + Gig +my) (jo —mg) + (i —my) j
1)’ 2 2 3
(prmpd = (i =my)  Lp—mgd = (Gy—my) . .
2 2 J1—712

(~1)7 ja Ja 1y (72 7 s
m1 -y —my my my My

/‘\\/"\

(da —my) + Gy —my)
2

(-1

A_\

Ji = my) = (G —m)
2
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The. expression for the 3j coefficient in terms of
canonical parameters, Eq, (4) of Ref, 2, is invariant
for three different values of n, Since the canonical
parameters ¢ and d change their values as n takes dif-
ferent values, only eight symmetries are accounted to
by the eight- element group, discussed by Lockwood,
Thus, the set of eight symmetries corresponding to an
n; (f=1,9) will form a group by itself in the canonical
parametrization, Table II clearly indicates the separat-
ing of the absolute symmetries from those carrying the
phase factor. The absolute symmetries are explained
by the 3F,(1) series given by Eq, (8), and the sym-
metries carrying the phase factor are explained by the
3F5(1) series given by Eq, (12).
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New expressions are given for the expansion coefficients in the Mayer expansion (and thus the virial
expansion). These promise to be useful in applications, as well as provide a simple rigorous proof of the

convergence of the Mayer series and some of its properties.

We will present a new form for the Mayer series
coefficients, that is formally patterned on cluster
expansions recently introduced into quantum statistical
mechanics.® The new form has already been useful in
a theoretical application (to the study of Coulomb
shielding),? and may have other practical applications.
This form leads to a proof of convergence we believe
to be much simpler than the standard proofs: see Ref.

3 for one of the standard proofs, and further references.
This paper may also serve as an introduction to some of
the techniques used in Ref. 1, and suggest lines of
development for more complicated systems,

To set the stage for the general situation, we first
consider a system with a single species of particles
interacting via a two-body potential ©(x). In the Mayer
series,

Bp :4? h,z", (1)
we give our form of the first three coefficients explicitly
(the b, term for a general system will be given later):

h,=1, (2)

Dy=— é[ﬁj: ds |dvv(x)exp(- psv(x)), (3)

b, :13[32]01 ds, J: ds, [d [d® [v(x)e(y)

+ g0 + )] - expl{= fls p(x) +s,0()
+5,5,v(x + )]k (4)
The usual expressions for the b, may be found in most

textbooks on statistical mechanics, such as Refs. 3 and
4. We now assume stability of the potential v,

b v(x; - v,)> - Bn (5)
1<i¢j%n
for all n, x, and some B> 0; and likewise its
integrability

lloll, = J folx) | dix < o, (6)
An important aspect of our expressions for the b, is that

the arguments in the exponentials, as in (3) and {(4),
may be bounded as though all the s, equal one. Thus

2 This work was supported in part by NSF Grants PHY 76-17191
and PHY 77-~02187.

b present address: Department of Mathematics, University of
Virginia, Charlottesville, Virginia,
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swlw)+s,py)+ss,px+y)= - 3B (7)
for 0+ s,, s,< 1. One sees easily the bounds

[b,| < 2B 1I0ll, exp(26B), @)

Iby | < 38%1Iv]12 exp(36B). £. (9)
Later we will see a bound for the nth term of this
system

[b 1< g el 7 exp(pB)(expln - 1)/n). (10)
Thus we get as a sufficient condition for the conver-
gence of the Mayer series (1)

zexp(BB)ellvl| < 1. (11)
We may compare the sufficient condition obtained in
Ref. 3:

zexp(24B) ej'ds,\'] exp(- pr(x))-1]<1. (12)

If v =v,+v,, where v, satisfies (5) and v, is nonnegative,
we will give an improvement (in the Appendix) that
allows the condition (11) to be weakened, to include the
case of hard cores for example, becoming on a par with
condition (12). If »(x) is repulsive, i.e., nonnegative,
the alternating sign property of the b ’s, as is easily
seen for the first three terms, is also immediate for
the general term. This is not so clear in the standard
expressions for b .

Whereas one may perform the integrals over the s
parameters in (2) and (3) to recover the usual expres-
sions, we will instead manipulate the three-body parti-
tion function Z®’ to extract these forms. This will yield
a telling insight into the general problem. We calculate
Z§», the partition function in a volume A:

1
Z;‘B):ﬁf dx, dx, dPx,
A3

xexpl-glv(1,2)+v(1,8)+v(2,3)]}, (13)

where we use the obvious notation v(i,7) for v{x; - x,).
The basic trick is use of the identity

exp(f(1)) =exp(A(0) + [, ds f'(s) exp(f(s)).

We first use the parameter s, to decouple the inter-
action of particle 1 from the other particles (that is,
to separate the uncoupled contribution)

(14)
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exp{- Blv(1,2)+v(1,3) +2(2,3)]}
—expl— f0(2,3)]+ [, ds, (- Hlo(1,2) +2(1,3)
xexpl{- As,®(1,2) +0(1,3)) +2(2,3)]}. (15)

The second term on the right side of (15) may be
replaced by

212(131(_ Ar(1,2) exp{- fls,(v(1,2) +v(1,3)) +0(2, 3]},
(16)

since the integral in (13) is symmetric in the three

variables. We now use the parameter s, to decouple

the system of particles 1 and 2 from the remaining

particle, replacing (16) by

2_[: ds, (- Blw(1,2)exp(- Bs,v(1,2))
+2j: ds, j: ds (- B)v{1,2)

x[v(2,3) +s,0(1,3)] exp(- BW(sy, s,)) , a7
with
W(s,, 5,)=[s0(1,2)+s;5,0(1,3) +5,0(2,3)].

The first term on the right side of (15) may be replaced
by

1+ (- ,B)j:dslv(l,Z)exp(— Bs,v(1,2)). (18)
We define
K?)zj‘;\d'qx: [Abe:iAi, (19)
where |Al is the volume of A.
K= ;ﬁj: ds jA d3x1f1l\ d*x, v(x; - x,) (20)
xexpl~ fsulr, = %)), [0 (21)

Limits as A — are always through boxes whose
minimum width approaches infinity.

K=k () +5 () (22)
A—:. lA’bg, (23)
where
1 1 : ,
k(a)= %szg ds, jo dssz &x, fA d’x, ,[A d’xy
xv(1,2)(2,3) exp(~ BW(s,, s,)), (24)
-3 1 r
k/(f)(b) zé szo dslf0 ds, fA d3x1 jA d3x2 fA d3x3
xp(l,2)s,0(1,3)exp(- pW(s,, s,)). (25)
Collecting, we have
ZP = (1/3NEPP + K VKD + KD, (26)

This is the coefficient of z* in the expansion

Z, = exp{2LK{mzn) 27
1

(whose convergence in some region we will soon prove)
and as is familiar
1

T ,IEK;")Z"A: Bp=21bz". (28)

The identifications we have made are clear if one is
familiar with the usual treatment of the Mayer expan-
sion, since the K{™ we have defined for n=1,2,3 are
connected. However this paper is self-contained, and
one may merely accept the definitions above, and
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postpone the identifications in (27) and (28). We proceed
to a mathematical treatment of the general problem.

We coasider the grand canonical partition function

Za :%“,zﬂzj\"’ 29)
with
Z‘l\"’—_——l‘[dx(")exp(—BV‘")). (30)
n J,

If X is a subset of integers
X v 3
S ax :ilelx(fAdxifdei) (31)
(n) is identified with the set of the first n integers. The

[de, is a sum over internal freedoms of the particle,
spins, charges, etc.

VX: Z} ‘U(_L/)
§Cx
1yl <2
= D u,x,, €+ 20 UKy, €q, Xy, €)
acx (a,8)EX
— % 32
_GZG}Xul(a)+2MZ)Exvz(a,B)o (32)
a#p

JX | is the number of elements in X, We have assumed
one- and two-body potentials, not necessarily transla-
tional invariant. The present scheme does not accomo-
date many-body potentials without modification. A
more literal mimicking of Ref. lallows this possibility.
We assume of the potentials:

[ A0] Measurability: v, and v, are measurable
functions.

[A1] Stability: There is a B> 0 such that

v - |X|B. (33)
[A2] Integrability:
lo,]] = supfd3x2fd52 [02(x, 161, %556, | <, (34)

Xype§y

(In the Appendix we will give an improvement allowing
the weakening of condition [ A2].) We define the
degeneracy s by

f;d%fde: |A|s. (35)

Proposition 0: Z, is an entire function of z.

In fact the sum in (29) is dominated term by term by
the sum

1
2~ (zexp(8B) [A[s)n. (36)
n=07¢-

We now generalize the use of s, in (15) and s, in (17),
introducing a sequence of parameters, s;, where s;
decouples the system of the first 7 particles from the
remaining particles. If W* is of the form

22 w(l)

yCx
then for X’ c X we define
WX'X':: E w(g)"‘

T w=w"+w* . (37
yCx*

yClx=xn
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One has removed from the W* all interactions between
particles in X’ and particles in (X — X*). To the set (¢)
of / particles, /> 1, we associate o,.,, a sequence of
parameters s, s,,...,5,.; and a potential I’V‘”(Ut_l)
defined by an inductive process

W(()t):yft), (38)
Wi =(1—s JWHEH D s W) i=1,+,0-1, (39)
Wit =wt (o, ,). (40)

Thus W(s,, s,) in (17) is our W*’(g,). Referring to (32)
we may also write

W(”(Ot-l)
Si'Si,l---S}_lﬂz(i,j). (41)

Proposition 1: Stability of interpolated potentials:
If the s; satisfy 0<s; <1 then

W‘”(ot_l) > ~{B (42)

We observe that from W' > ~ Bt all ¢, there follows
W) _ Bt The proposition follows by noting that the
induction step (39) in the construction of W(”(UH)
implies W§” satisfies the inequality for all i, as the
convex sum of terms that do so.

When s, was employed in (15), the next particle, 2 in
(16), was coupled by v(1,2) differentiated from the
exponent. When s, was employed in (17), the next
particle, in (17), was coupled by either »(1,3) to
particle 1, or by ¢(2,3) to particle 2, in the potentials
differentiated from the exponent. These two possi-
bilities are separated, respectively, into the two terms
(25) and (24). In general we introduce a function 7(7),
i=1,2,...,t-1with (;) a positive integer satisfying

(i)« (43)
to specify a term, wherein the potential differentiated
from the exponent by s, is v(i +1, 7(i)). Thus (24) has
1n® specifying it with

(1) =1, 1°2)=2 (44)
and (25) has n® specifying it with

(1)=1, 7°(2)=1, (45)
It is natural to associate a tree graph to each function
1. The vertices in the graph are numbered from 1 to ¢,
the vertices i +1 and n(i), ¢=1,2,---,¢ -1, are con-
nected by lines. In particular, n¢ and n® have

respectively the following graphs associated to
themselves,

*3 ]

12 22

‘I “1

A somewhat similar use of a tree graph analysis to
study the Mayer series may be found in Ref. 5.

We define
R 1 1
Jao,,= [ ds; o [lds, (46)
2066 J. Math. Phys., Vol. 19, No. 10, October 1978

and introduce a function f(n,0,_,) by

t-1
f(n,Ut_l):‘l'losi_]si_z---s [>2
ie2

n(i)s
(47)
f(n’gl): 1,
where s,.,5,.,°"*$,;, is understood to be 1 if n{i)=1.
Sf(n,0,.,) is the product of s,’s differentiated from the
exponent by the sequence of decouplings. We now can
define K{#’ in the general situation

KL =Dk ). (48)

This is the general form of (22), and the sum is over all
71 satisfying (43). As a general form of (20), (24), or
(25) we have

-1
k(t)(n):(—ﬁf)t fdot_l./;\d;\’”)f(n,ot-l)

T oG +1, 7)) expl - sWEo,_,)]. (49)
i=1

We can finally specify the general form of the Mayer
expansion coefficients, if the interaction is translation
invariant

—_— "-1 S
bn:(_i)—%/fdcn-l./sdx(n-l)/denf(n’ Tt
R

n=1
X (i +1,1G)) expl - W™ (0] (50)
i=1
The following proposition is merely an observation in
our formulation.

Proposition 2: If the two-body potentials are non-
negative, then (- 1) _x 0.

We will have need for the following purely numerical
estimate from Ref. 6.

Pyoposition 3:
?j'dot_lf(n, 0,.,)) <exp(f-1). (51)

To prove this we first note that the left side of (51) is
less than or equal

1 1
jn dsl “Jn dst-l
t=1
XEf(n,Ut_l)eXp<Ls,_lst_2'--s) (52)
n i=1

If one performs the s, integrals in the indicated order,
using the estimate
fl ds vexp(sv) < exp(v) (53)

at eagh stage, the proposition follows. Proposition 3 is
the most complicated estimate we need, we detail its
steps for =4

?f(n,og):(l +5 M1 +s,+s,8,) (54)
J dU,_l?f(n, o)
— [lds, [l ds, [ dsy (1+5)(1+5, % 5,5,)
s f: ds, fol ds, f: ds,(1 +5,)(1 +s,+s,s,) (55)

X exp(s,5,8; + 855, +53)

1 1
< fo ds, fo ds,(1 +s,)exp(s,s; +s,)e

< j;)ldsl exp(s,) exp(2) < exp(3).
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Proposition 4:

KW |< =2l explzsn) SRU=D)

DL 66

This follows easily from the last proposition and the
definitions.

Pyoposition 5: If the interaction is translation
invariant

lim Ti—l KM=b, . (587

Proposition 6:

(ny _ 2ty pinmiy
Zm = 13?‘" K2 (58)

This expression is related to the Kirkwood—Salshurg
equations and similar equations.?® Equation (58) is
directly derived by introducing a sequence of decoupling
parameters to isolate connected configurations contain-
ing particle 1. It is an easy combinatoric exercise.

Proposition T: For z sufficiently small

Zy =expl 222K M), (59)

n

By Proposition 0 and Proposition 4, both sides of the
equation are analytic functions of z for z sufficiently
small, Using Proposition 6 we then have

x

2 S
zﬁ_ngnZXn):gzzilgi\mzy-nzn-, (60)

from which follows

za—izA zgizixg“zA (61)

yielding (59) and proving Proposition 7.

In fact, the equality in (59), and the convergence of
the series in the exponent are ensured for

zexp(BB)ellv,lf< 1. (62)
Proposition 8: If the interaction is translation invari-

ant, then for z sufficiently small [satisying (62)]

. 1
lim Wln(ZA):g b,z", (63)

This last proposition follows from (56), (57), and (59)
by the easy mathematical theorem:
Let la,, <7, with 37, <=, Assume

lima;,=c,
iew
then

. <N N
limZ2sa;,=2uc,.
jew R

This is a very special case of the dominated conver-
gence theorem.

Thus we have the basic properties of the Mayer series
rigorously developed in the regime given by (62) by an
entirely elementary argument. In the Appendix our
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procedure will be modified to give an improvement
extending the regime of validity, weakening condition
(62).
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APPENDIX

We split the interaction into two parts
visvi+v) (A1)

each constructed as in (32), V, from v,, and v,, satisfy-
ing assumptions [A0], [A1], and [A2], and V) from v,
=0 and v,,, with v, measurable and nonnegative. We
define u(i,j)

uli,j)=exp[ - pv,,(i,7)] - 1. (A2)

We will indicate a modification of the expansion of the
paper that will replace (62) as the limiting inequality by

zexp(pBlefllvgll + 87 ull] < 1. (A3)

Different split ups (Al) may be considered to find a
best result; this may be virtually equivalent to equation
(12) as a limiting condition.

The modification of the procedure consists in inter-
polating exp| - fv,,(i,j)] as 1+ su(i,j). This replaces
W(a,.,) of (41) by

1
Wt()”(ot-l) _E

x 2

log|l+s,°s,,,*"
1<i<j£t g[ i i+l

'sj-lll(i}j)], (A4)
where Wit¥ (o, ) is W(”(UH) of the paper calculated for
VY. The v(i,;) of (49) and (50) then are replaced by

1 u(i,j) .
pl+s; s, uli,j)

The substitutions of (A4) and (A5) into (49) and (50)
easily yield (A3) as a sufficient condition for
convergence,

Voolt,7) = (A5)
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O(3) shift operators are constructed in terms of tensor operators T(j,u) and the O(3) generators. These
are of type B, k = —j,...,j, where B raises { by k, I(I+1) being the eigenvalue of the O(3) Casimir
operator. Various convenient normalizations of these operators are constructed, and their properties and

uses considered.

1. INTRODUCTION

In some previous papers,'~!° shift operators were
constructed out of the enveloping algebra of the
generators I, of O(3) [or SU(2)] and the components
TG, u), u=-j,...,j, of a tensor representation of O(3).
These operators were essentially of type O, k= —j,...,
j, which raise the value of I, where I(I +1) is the eigen-
value of the O(3) Casimir operator L?, by k, when acting
on eigenstates of L? corresponding to arbitrary values
of m, the eigenvalue of [;. Operators have also been
given!'™* which raise the value of by +1 but which are
valid only when acting on states for which m=1.

A general analysis of the operators O* for arbitrary
j values has not been given, their construction and
properties having been considered only for the special
cases where j=1,%"%%j=2 1421 3nd j=3.%° For these
particular j values, the O{ were found to be extremely
useful for the classification and analysis of irreducible
unitary representations (IUR) of various low-dimen-
sional groups possessing an O(3) subgroup. For j=1,
Stone” appears to have been the first person to explicitly
construct such operators and apply them to the group
0(4). Miller? also showed that the {-stepping operators
arising in the type E and F factorizations of second
order differential equations given by Infeld and Hull®
can be constructed from the enveloping algebra of the
three-dimensional Euclidean group, and so these are
essentially also OF-type shift operators for the j=1
case. Hughes® showed how these operators could be used
to give a unified analysis of the IUR of O(4), the
homogeneous Lorentz group O(3,1), and the Euclidean
group. The j =2 case arose for S1(3,R),* and for SU(3)
in the O(3) basis, ** where the shift operators were used
to obtain an algorithm for the calculation of eigenvalues
of the O(3) scalar operators used to resolve the state
labelling problem. The j=3 case was applicable to the
group O(3)A (7, XT,),® and to the analysis of TUR of SU(3)
in an SU(2) basis.®

In this paper the case of general j is treated. The
cases where j is integral or half-integral have to be
dealt with in a slightly different manner, in that if /
is raised by a half-integral amount, so must m, since
{ and m must be integral or half-integral together. Thus,
for integral j, the shift operators may be chosen to
commute with /,, whereas when j is half-integral they
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are chosen to raise its eigenvalue by +3. Also, the
hermiticity properties of the shift operators in the two
cases are quite different, due to the fact that the opera-
tors T(j, u) form a closed set with respect to taking
hermitian conjugate for j integral, but not for half-
integral j.°

The commutation relations of the 7(j, 1) among them-
selves are not needed, and therefore not considered in
this paper, so it is not assumed that the [, and T(j, 1)
generate a group. However, once mutual commutation
relations are given for the T(j, 1), a Lie algebraic
structure may ensue. For instance, SU(3) and S1(3,R)
are formed from the /; and {T(2, 1), u=-2,...,2}
SU(3) in an SU(2) basis and SU(2.1) are generated by
the set consisting of the I,, T(3, +3), T(3, +3), and
7(0,0), and the group O(3)A (T,x T,) is generated by the
ii, T(%;i Il?-)y and T(%)i%)-

We start off in Sec. 2 by constructing the shift opera-
tors B? for the integral j case, which commute with [,
and shift [ by k, and B}'%!/2 for j half-integral, which
shift m by + % and I by k. These operators depend
explicitly on the / values of the states upon which they
act, a fact noted by Joseph'® for the particular case of
the step operators of Infeld and Hull.® I they depended
on [ only through the combination I{I +1), this could be
replaced by the operator L?; however, their dependence
on [ is more complicated, and so we introduce the
operator R whose eigenvalue is I. The B operators con-
tain [ and m in the denominator and to half-integral
powers, and so are not the most convenient to use in
practical applications since when [ and m are replaced
by the operators R and [,, it is highly desirable that
these operators occur only to positive integral powers.
Therefore, in Sec. 3 we obtain more convenient nor-
malized operators A} and O? for integral j, together
with their half-integral j counterparts. The expressions
for OF in terms of the T(j, 1) and I, are such that [ and
m occur only in the denominator and only to integral
power and so can be replaced conveniently by,
respectively, R and I,. The resulting expression for
O is a linear combination of products of positive
integral powers of the I, and R with the 7(j, 1), and is
valid even when not explicitly acting on states of definite
! and m values.

The O% do have the disadvantage that their matrix

© 1978 American Institute of Physics 2068



elements contain m-dependent terms, these being such
as to guarantee that the lowering operators O;*, £>0,
never lower [ below [m |, which would be inconsistent
with properties of IUR of O(3). The operators A} do not
contain m -dependent terms in their matrix elements
and are the operators to use when determining mini-
mum [ values occurring in IUR of groups containing an
O(3) subgroup as in the case, for example of S1(3,R).*

In Sec. 4 we consider the hermiticity properties of
the shift operators for the integral j case. The set
{7(j, W)} is, in this case, closed under Hermitian con-
jugation, and so the shift operators satisfy hermiticity
properties of the type

(v, Lm (O |y, L4k ym) =y, (y, Lym |07 v,
+k,m).

a,,; turns out to be (21 +1)/(21 +2k + 1), which shows in
particular that the O(3) scalar operator O is Hermitian,
If one replaced I by the operator R, then (O*)' can be
obtained by taking the Hermitian conjugate of each term
in its expression. Before the resulting operator can be
compared with O;* however, R must be brought to the
right of all 7(j, 4), and this necessitates knowledge of
the commutator [R, T(j, u)]. Although these can be
worked out, this method is more laborious than the one
using matrix elements and so is not employed here;

in operator form the above hermiticity relation becomes
in fact

(O*)'(2R +1)=O™2R - 2k +1).

For half-integral j it is not possible to close the set
{7(j, 1)} with respect to Hermitian conjugation in a
self-consistent manner, so that a new set of tensor
operators {T(j, 1)} have to be introduced, together
with corresponding shift operators; this is done in Sec,
9. The counterpart of the ahove hermiticity relation is
found to be

(OF*1/ 21 (2R + 1) = (= 1)¥1/20 081 /2(9R _ 9k +1).

In Sec. 6 it is shown how the properties of the shift
operators may be used to calculate the above mentioned
commutators [R, T(j, 1)] for the integral j case, and
Sec. T treats the same problem for half-integral values
of j.

Finally, in Sec. 8, we discuss the relation of the
shift operators obtained in this paper with those derived
by other authors, and ways in which the work of this
paper may be extended and generalized.

2. CONSTRUCTION OF THE SHIFT OPERATORS
B¥ AND B/, =112

Let 7(j, 1), u=-j,...,j and j integral or hal-
integral, be a (2j + 1)-dimensional tensor representa-
tion®® of O(3) [or SU(2)], whose commutators with the
generators {,, I, of O(3) are

(L, TG, =[G Fw) G2 p+DV2TG, p21),  (2.1)
(16, TG, W)= T, 1), (2.2)

where here, as throughout the rest of the paper, the
positive real value of the square root is taken.

We shall suppose the T'(j, i) act upon states ly,l,m),
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where I(l +1) and m are the eigenvalues of, respectively,
the O(3) Casimer L? and l,, and y denotes an additional
collection of labels needed to completely specify the
states. Now'®

<'y',l',772'|T(j, u)|y,l,m>

=(-1)" YLUNTGIN Y, (2.3)

—m' U m

where

I 7 1
-m' U om
is a Wigner 3-j symbol and the {y’,!||T(j)llv,l) are

reduced matrix elements of 7(j, u).

We treat the cases of integral and half-integral j
separately, considering first of all the case where j,
and therefore also u, is integral. The shift operators in
this case are constructed from the operators

(2.4)

which, since they commute with [, leave unchanged the
m-values of states upon which they act,

Q. =T0, iy, u=0,

Using (2.3) and (2.4), we obtain
<Y,,l',le*u,‘y?l’m>
v
:(_ 1)1‘-m
-m FU omii

1/2
x[gz:';;&‘i'gfﬁ;:] G TGl

Let
P, - [t o, &9
so that, for u=j,...,j,
v Um P, v, l,m)
o l
(o) GLUITGY, L. (2.6)

-m —=U mt U

This then implies that
N J l 1+k
p“ ,'}’,l,m}: )_1(_ 1)t +re-m
k==j
— Mk omE+u -m

x;<y',l+k'[:T(j)lly,z>[y',z+k',m>, 2.7

where the symmetry of the 3-j symbols under even
transpositions of the columns has been used.

Now the 3-j symbols satisfy the orthogonality
relation!s
Jy 2 Ja\/ir da s
2

Mmismg ’
my; ms Mmyf\m; my; m,

(2.8)

where 8(j,j,j;)=1 if j; lies between [j, ~j,| and (j, +37,),
and vanishes otherwise, Hence

=(2j, + 1)-1513156,"3"!56(]‘1]‘ 2a)y
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L+k
u@y P, lysl’m>
-KL mty —-m

=(=1P** 20 +R)+ 1]76(j,1,1+ k)

><4j_;(y’,l+Ie||T(j)Hy,l)f}/’,l+/’e,nz>o (2.9

Hence a shift operator changing / by %, k=~-j,...,j,
is
i j I I+k
Bi= 2 P
==\ L om+ i

n
- m

i
=ak(l,m)Q, +Z_}l[at(l, m)Q,, + (=10 (1, - m)Q_, |

(2.10)
where, for 4=0,...,j,
X [ =m =)@+ m) ]
a“(L’m)_[(l+m+u)!(l—m)!
j 1 I+k
X . (2.11)
-0 o mt L =m
The action of B on Iy,l,m) is given by
By, l,m)= (= )P m[20 + 1) +1]76(j,1,1 + ).
2y LHRNT Gy 1) Iy L+ ke ym ). (2.12)
”
Above we have used the well-known property
iy da Ja ' hoode s
= (= 1Y 1%42%3 ) (2.13)

m, m, M, -y, —Hl, —HNl

which, as it stands, is valid only for j,, 7,, j, nonnega-
tive. When any of the j’s happen to be negative one must,
in the phase factor, replace j by — (j+1). Thus, if j,
is negative one has

jl j2 j3

my, m, M,

Ji J2 o Js
— (__ 1)-(jlol)qj20j3
-m,

—-my, -y

A similar argument applies to the corresponding relation
for the vector coupling coefficients.

An alternative method of calculating B would be by
the requirement that

(L?,BY]=k(k +21 +1)B", (2.14)

It is not difficult to check, using recursion relations
for the 3-j symbols, that the B* given by (2.10) do
indeed satisfy (2.14).

For the case of half-integral j, the shift operators
must change not only [/, but also m, by half-integral
amounts. We consider only those which shift m by
+3, denoting them by B}'%'/?. They are constructed
from the operators

QL =T, % WP, QL =T(, ¥ mIE/D,  (2.15)
where u=1%, ,...,j. One can check that
[t0, @2 1= 202, [, 00,]= - 305, (2.16)

from which it follows that ®, and ], change m by 3 and
— %, respectively. Letting

(Lxm)l U Fm - =3)1]L/2

ST JN

1*“‘[(lim+u+g)z(z¢m)1 tu (2.17)
TFmM @ em - p+5)171/2

R 2

P*“‘[(Hm+u—é)!(zim)1] @5y (2.18)

one finds that the following shift operators change [ by
k and m by + §:

é J l L+k
_Bk,n/zz pe
1ym ==y ) 1 R i
-u omApEE —mFh
H
= B L, 2005 + (- U, -, 5 D6, ),
(2.19)
where, for n=13%,...,7,
J l IL+k
aklym,+3)=
- omtpty —mFg
Uem)AFm— =372
X °
[(11717+u+§)!(l¢m)1 (2.20)

The action of B¥2'/2 on ly,l,m) is given by
B?::,l/z ')’,l,n?):(—1)“*-”1*1/2[20+k)+1]-16(j,l,l+k).
L L+ RITGNY D) |y, +kym 2 2). (2.21)

3. NORMALIZATION OF Bf AND Bk 172

The aim in this section is to obtain more convenient
normalized forms of B¥ and B}'%/? in which the
coefficients of @,, or Q:u contain [ and s only in the
numerator and only to integral powers. This will enable
us later on to replace w and [ by the operators [, and
R (whose eigenvalue is I), so that the resulting forms
of the shift operators will be independent of the m and
{ values of the states upon which they act.

In order to do this, we need to know the manner in
which the 3-j symbols appearing in (2.11) and (2.20)
depend on [ and m. Specifically, we shall be interested
only in those parts of the 3-j symbols which contain /
and m either to half-integral powers or in the denomina-
tor, and we shall refer to them as SR-D (short for
square root-denominator) parts.

We consider the 3-j symbol ¢/, _,_}, I:¥), where 1 is
either 0 or +3, and where for the time being we
restrict ourselves to the case where k£ and 1 are both

2 |»{. We shall need the formula

J l L+R\ . sema
(j Y m+x>_( D [
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1/2
@NCI-j+ENU+j+m+ 2@ +k—m =) ] 3.1)
GHRNG =M@+ i+ +DI - —m =T +E+m+2)! )
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and the recursion relation

i l l+k)
-1 —m=x-p+1 m+xr

B [(l—m—x+k+l)(l+m+7\+k)]”2
T G+wG-u+1)

l+k

] l
X
W o—m=-p=x+1 m+a-1

[(z-m-x—u+1)(l+m+x+u)]1/2
- G+w(-u+1)

y < j l L+k )
Lo o—m=Ud~=x m+2r
In the expansion of ¢ _ %_, +%), first consider terms
(i.e., linear factors) involving I but not m; it is clear
from (3.2) that these do not depend on the value of L.
This therefore implies that the -, but not m-, depen-
dent SR-D part of (, _ 1 , ') and ( .}, +}) are the
same, and therefore from (3.1) equal to [(2] -j +&)!/
(21 +j+k +1)!1]'/%, The recursion relation (3.2) also
shows that they contain no terms depending on m but

not on /.

(3.2)

We next show by induction that the {- and m-dependent
SR-D part of (¢ _ ! . **)jg

U o=p=meN m+r

[(l+m+u+7\)l(l—m+k—)\)!]
U= = =2 +m+Ek+2)

1/2
» Irlsk<uy,
(3.3)

1/2
,] v als <k,

[(l+m+k+7\)!(l—m+k-—>\)!
T+m+u+N10=m—=p=2)

From (3.1) we see that (3.3) is true for u=j. Suppose
it is true for some U with 2+ 1< y < j; one can then by
means of a straightforward calculation show that it is

alsotrue for ks u-1<j-1.

We must next consider the case where u and k are
both < — [A[. First of all, from (2,13) it is easy to see
that the I- and m-dependent SR-D part of (J, ,.!_, »%
is obtained from that of ¢/ _ } _, I**) by simply replac-
ing m by - (m + 2x). In order to consider the case where
k<~ Ix!], observe that'®

o Ja da) (L yimrame(g), + 1)1/
m, M, My 3
x<j1’”11,j2am2’jl,jzyjsy_m3>’ (3.4)

where (j,,m,j,, My 1j,,72,75, — M4} is a vector-coupling
coefficient. Note that (3.4) can be regarded as the
definition of 3-j symbols in terms of vector-coupling
coefficients. We take this definition to be valid for
negative, as well as positive, values of j,, j,, and j..

From (3.4) it then follows that
(j -1-~1 -1-1+k i l I~k
U —Hh=m=x m+ A M —=m—=x m+2x
=(_1)21+1/2

Sy =l=1,—p—m=nalj,-1-1,~1-1+k,—m 1) .
Gybyly—=m=2li,l,l—k,—m—2)

Now from the way in which vector coupling coefficients
are defined, namely, as coefficients in the expansion
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of one set of basis elements for the carrier space of the
direct product representation D/1 XDz in terms of
another, where the basis elements depend on j, and j,
only through j,(j, +1) and j,(j, +1) and are therefore
unchanged if j, or j, are replaced by - (j, +1) or

- (j, + 1) respectively, it is clear that the vector-
coupling coefficients themselves are unchanged by
replacing j, or j, by ~ (4, +1) or - (j,+1), respectively.
Hence

<j,“,“l_1y_”"m—Xij,—l—l,—l—1+k,—m—x)
=<j,ﬂ-,l,—li—m—)olj,l,l—k,—m—)\.),

so
i -7-1 -1+
=(=1)%/2
—L-m- + 2
U L~=m=N m+xr /i I I—k
X -

L —p—-m—=x m+r/(3.5)

Note that in deriving (3.5), one could first apply (2.13)
to both of the 3-j symbols; as a result one would instead
get (~ 1)**%*1/2 55 the phase factor. This apparent
discrepancy is immediately resolved if one follows the
procedure given directly after (2,13). It is then found
that the phase factor is just that appearing in (3.5).

We now consider the normalization of the B}, The
coefficient given by (2.11) can be rewritten:

@=-m-wQ +m)!] 1e
(I +m+ W -m)

a’f‘(l,m)—_— (_ 1)j+k¢2;[

i 1 l+k
x . (3.6)
L =m=U m

One can show by induction that the factor
(@1 =+ G+RIG =R+ + R+ DI]Y/2

occurs in ({ _ L **)for all 4>0. Thus we first
normalize away this factor, which is common to all the

at(l,m), and define

L etem (j+k)!(j—k)!(2l+j+k+1)!]1/2
Ap=(-1 [ BNT@ 70! By.

(3.7
Then, by a straightforward calculation one gets

A= 0, )@ + DB 1, )@, + (= DI, - m)Q,],

(3.8)
where, for u=0,...,j,
By (I, m)=(~ 1) "t

1/2
X[(j+k)!(j—k)!(2l+j+k+1)!(l—m—u)!(l+m)!]

@RI - +R)A +m + )T - m)!
x(j ! l+k), (3.9)
Bbo—p-m m

and where in obtaining the coefficients of Q., we have
used (-1)*%*™ =1 since  and m are integral or half-
integral together.

The action of A% on |y,1,m) is given by
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[ G+ G =R +j+R+ 1)
A?'V’l"'”‘[(Zi)'(zz Y [N YR

XE(? L+ENT(G ”7,l>[y’ l+k,m).

1/2
] 6(4,1,1+k)
(3.10)

For the normalization of the B;‘:;}"z we proceed in an
exactly analogous manner. Thus define

Ryx1/2 _
AB= (-

1/2
X[(j+}e)!(j—k)!(2l+j+k+1)‘.] Brat/2
@)1 +k)! s

1 )'k*l -mil/2

3.1
Then ( 1)

F]
App/r= 25 |

u=1/2

BRI, m, 2 )@, + (- DR, —m 7 5)Q, ],
(3.12)
where, for p=4%,...,7,

B, m, 5 =1(-

1)3145me1/2

X[(j+k)!(j—k)!(2l+j+k+1)1(l—m— u—é)!(l+m)!]l/2
@iN@I-j+eNU+m+p+ DI -m)

[+k
m+% ’

The action of A¥*' /% on ly,l,m) is given by

<j l
X 1
[V V7 (3.13)

Ap 2y Lm )

:[U+k)!(j—k)!(2l+]‘+k+1)!

1/2
QT -+ &) (21 + 2k F1)° ] 8j, 1,1+ k)

x;, P LHRITOMY D v L+ Ry mt5). (3.14)
We see from (3.10) and (3. 11) that the matrix elements
of A} and A}'*!/% are independent of m.

Going back to the case of integral j, we consider the
SR-D part of the coefficient 8*(I,m), noting first that
the part which depends on ! but not on » has been
normalized away. It is easy to show that the [~ and m-
dependent SR-D part of 8% (l,m) for u,k>0is
[Q=-m+ENU+m)! /(L+m+ B -m) ]2, which pre-
cisely equals ﬁ;(l,m). From (3.8) we see that the -
and m-dependent SR-D part of the coefficient of @_, in
Aris [U+m+R) U -m) /(L =m +R) (I +m)! ]2, which

is just (- 1)7** times the coefficient of Q.,. Define, for
k=20
Grm+)-m+r)]"”
. m i -m ! X
o,_[ L ] AL, (3.15)

Then .

J
=v4(, m)Q,+ L[y (1, m)Q,, + (= DI™A(, - m)Q.,],

et (3.16)

where, for £=0,...,j

x(j H l+k>‘
b o—p—m m

From the preceding discussion it is clear that y* (I, m)
contains no I- and m-dependent SR-D part since the
normalization in (3.15) cancels out the term {( +m
+R)1/(1+m)! /2 that occurs in B (l,m) and yields
(I -m+E)!/(l —m)!, which is not an SR-D part since
k= 0. In particular the coefficient of @,; is

YL, m) = —m+R) /(I -m), (3.18)
and the coefficient of @_; is (= 1)}¥™/4(l, —m).
The action of O% is given by
O |y, 1,m) s

_[(j+k)!(j @I+ +E+ DI+ m B (= m +k)!]
T =T+ +m)TU~m) (21 + 2k + 1)
X6(j,1,1+ R0y L+ EITGly 1) |v' L+ R ym).
v (8.19)
O% therefore has the desired property that both ! and
m occur only to integral powers and only in the numera-
tor. I and m can therefore be replaced by the operators
R and l,, respectively, remembering that all terms
involving R must be placed to the right of @, in order
that, when O acts upon ly,I,m), R be replaceable by
its eigenvalue [. Of is then written entirely in terms of
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NI+ AR+ —m = p) L+ m+R)! (l—m+k)1]1/2
NI+ +m+ W)U -m) Y

(3.17)

1
the operators ,,

T(j, 1), and R, and is thus in a form
which is independent of the particular state upon which it
acts.

Before defining O;*, observe that

[5”( (l+1) m)
BRI, m)

xj ~[ -1 —1l-1+F j l L=k
U —u-m m b o—p=—m m)’
which together with (3.5) shows that 5%, m)

=p(-(@+1),m), so

== __ Ak
Al —A-(l*l)'

( 1)-21-1/2

(3.20)

In order to preserve this relationship for O}* we
accordingly define for 220

1/2
op=- [ ] A G2
Then
Ol-k= Of(m)
=52, m)Q +E[ 571, m)Q,, + (- 161, - m)Q_, ],
(3.22)
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where
O, m) = (= 1) rm

1/2

for k> 3

1/2
Ow,zz[(z+m+ki-§)!(l—m+k¢§)1] s
Lim T=m)IT+m)! tm

[(21 +i—k+DIGHRNG =BT —m — I+ m)!]"’] (3.24)
M@= <N U vm+ DU —m kN[ +m k)
CHTRI— G-V Fm+ W —m =k Then
o ! l—k) i _ .
b o—p—m m)/) (3.23) ()f:fnl/Z:ug/z[d’;(l,m,i’i)Q: F (=12 (1, - m, 7 3)Q%, ],
(3.25)
Following the steps of the above argument, we now ) _
consider the normalized shift operators O}:%!/2, Define where, for u=3,...,7,
J
A ,m, sy = (= 1)wmm/z [(j NG =N @I+ Il -m - N (I +m+e+ )Nl -m+k - %)!]‘/2
> 27—
we N @I -+ +m+ pt+ DI —m) ]
7 l L+k
X(li —m— =t m+ i) (3.26)
It is easy to show that O%*'/? and d* (I, m, z) contain no I- and m-dependent SR-D part.
The action of O%:2'/* on ly,l,m) is given by
1 1 1/2
Ohstt/2 G+HENG=EN@I+j+e+ DU +m Atk D@ -m+EFH)!
17"' ‘)’,l,’”l> = - A 2
' @V EL—j+E) A —m) I+ ) (2 + 2R+ 1)
X6(3, 0,1+ R LA RNT(DIy, 1) |y L+ kym + 2). (3.27)
P
To define U7*:#'/2, note that b%(~( +1),m,z) = (= 1)"'/?8(1,m, - 3), so
AR = (= 172 A (3.28)
Thus for % > 3, define
(L +m)! (Il —m)! 1z
~kyt1/2 __ (_ 1)e-1/2 ~k,21/2 3.29
Ot (=1 [(l+m—ki %)Hl—m—k*é)l] Al ( )
so that
i
O 2= O = 4o MG 2 QL+ (S 10, -, 7 2062, ], (3. 30)
where
i/2
R, m, L) = (= 1)3E iR GHRNG-ENQ@LI+7 R+ D)0 -m—p =) T +m) ]
L @@=~ tm—k T D C-m—F =D+ m+pt D
X(]u : Lol ljrkl). (3.31)
—m-U=-7 mrz

The fact that we can choose our shift operators to
satisfy the symmetry relations (3.20) and (3.22) [or
(3.28) and (3. 30)] is due to the fact that the TUR of O(3)
are labelled by I(l + 1) rather than by [ itself, so one
may describe them as corresponding to either =0

3 3
1
2y 1; 2s°°

-orl=-1, -3, -2, ~% -+ In passing from
the positive [ to the negative ! description, the roles of
O} and O* (or of O%%!/2 and O;*:#'/2) are interchanged,
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I. . - cns
since in the negative I description, O%,, and O%}1{2 |

by raising I, lower I(I +1) in precisely the same way
as Op* and Oj*:*1/2 do in the positive I description.

For the case when j is integral, as a result of (3.20)
and (3.22) we note that O = A? is invariant under the
replacement of by - ({ + 1), and therefore contains I
always in the combination (I + 1). This means that R
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occurs only in the combination R(R+1)=L>=1,1_+1,(l,
-1); 0 is therefore an O(3) scalar operator which can
be written entirely in terms of I; and T'(j, u).

Regarding the actions of O, Of*:!/2 and O#*:"1/2 on
ly,,m7, since their matrix elements are m-dependent,
they are not as convenient to use for the classification
and analysis of TUR of groups with respect to the IUR of
O(3) subgroups as are the corresponding A operators.
The additional term [+ m) - @ +m -k + 1) =m) -~
X (I =m —k+1D]/? in the definition of O3 over
AJ* guarantees that O;* cannot shift I down below [ |
since one of the above factors must vanish whenever
1= Ll +k. Similarly for the case of O**'/2, If one
uses the A operators instead of the O operators in such
an analysis, one removes all considerations of the
internal structure of IUR of O(3).

We end this section by giving the precise forms of
O3* for the case j=1, and of O}*;!/? and Of*;/2 for the

case j=73. These are
OY=T(1, -1, + V271,00, - T(1,1)_, (3.32)

Or=T(,-DILR-1,+ 1)+ V2T (1,00R -, + DR+ I,+ 1)

T, DILR +1,+ 1), (3.33)
O'=~ T, - DI (R+1)+ V2T, 00(R + )R -1,)
— TR ~1). (3.34)

These are precisely the operators obtained for the
groups O(4), O(3,1), and E(3) ®* when one identifies
T,V =~q,, T(1,0)=q, T(1,-1)=g¢., and divides by
two. Similarly, when j=2, one obtains the operators
for SU(3) in an O(3) basis''® and S1(3,R).*

For the case when j=13, one obtains
TG, - T, DR+ 1),

O B2 = _ T, 3 501, + T3, £ )R FL),

1/2,81/2 __
O;,m s/ -

(3.35)
(3.386)

and these are precisely the operators obtained for the
case of O(3)* (T,%T,) " and SU(3) in an SU(2) basis®
when one denotes T(3,%35)=—q,,,,.

In the half-integral j case one can in general construct
(2j + 1)* shift operators O%" , k,r=j,..,j, which when
applied to ly,l,n ) change ! and » by any amounts with-
in the above range. The preceding analysis, however,
provides only the expressions for O%*/2. However, by
the action of OF%1/2 followed by the repeated application
of I, to iy,i,m), it is easily seen that one is able to
shift / and m by any desired amount within the above
range. Thus our restriction to the construction of only
O%*l/2 causes no serious loss of generality.

4. HERMITICITY PROPERTIES OF THE O

Just as [, are related by the hermiticity conditions
I1=1,, the O%* are also related by hermiticity, These
may be investigated in two ways, depending on whether
or not we replace ! and m by operators R and [,
respectively. If we do, then we may take the Hermitian
conjugate of O™ directly and compare it with O™*, noting
that when R is used the subscript “” is removed from
O since it is superfluous; this, however, involves
knowledge of the commutators of R and the ¢,, which
will be considered in Sec. 6, and so in this section we
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use the alternative approach which, since Oj* must act
to the right upon ly,l,m ), involves comparing matrix
elements of the shift operators. First, note that 0¥ acts
to the right upon ly,I,m ) as a raising operator, so
(0% acts to the left upon {y,l,m | as a raising operator
and, unlike 0;%,, does not act to the right upon fy,{+%,
m) as a lowering operator. The advantage of replacing
I by R is that then, like O™®, (0% does in fact act to
the right as a lowering operator. This advantage is,
however, small compared to the disadvantages caused
by the increase in computational complexity. We there-
fore find @, , in the equation

Oy Lm (OO " L+ leym) = ay, (v, Lm |

xOE v L+ kym). (4.1)

Before calculating a, , explicitly we note that the
relation 0%, , = O}* immediately imposes a condition
on o, ,. To see this, suppress y and m from the states
and label them by I(I + 1) rather than I; then, taking the
complex conjugate of (4.1) and replacing [ by - (I + 1),
we have

(=) =k+1) O |11+ 1))

= F @ =Y =k + 1) (ORI + 1))
s0 that
QUHD]OENCHR) +R+ 1))

=@ ey LU+ DO L+ + R+ 1))

from which follows

@y OF ey = 1 (4.2)
To calculate o, , explicitly, first observe that
(v Lom [AR [y L+ R, m)
oo
=Rk (o 1 o AT v Lk, m)
Sl p+l),k
where
_ (1 +m) (I ~m)! /2
Jrw= A+m+N {0 ~m+R)
But
f-(l*k*l),k:(—1)-kfl,k:(_ 1)-’7);,)2’
so that
(v, Lym [AMT L+ Rym)
= (= 1ra,, (v, Lm AT v/ 1+ R m). 4.3)

Since the matrix elements of A¥ are independent of n,
it follows that o, , is independent of m.
Using Eq. (3.10) and the fact that 8(j,,I +k)=5(},!
+k,1), we obtain
(y,l,m|AM |y’ L +k,m)
vy l,m AP Iy L+ R, m)
@1+ 1y, L+ RNT (DI, *
20+ 26+ 1Ny, T, L+ k)
We now impose the following hermiticity condition on
T(j,1):

T(j, W) = (= 1T, - 1.

= (4.4)
(4.5)
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Here we note that (4.5) is defined in a self-consistent
manner, for if one forms the Hermitian conjugate of it
and lets i be replaced by —~ i, recalling that in this
case 4 is an integer, one arrives at the condition (4.5)
once again.

Using (2.3) and (4, 5} with ¢t = 0, we have
G L+ RIET Y, 1)
= (= 1)y L+ kym | T(3,0) [v,1,m)/

<l+k i z)
—m 0 m

= (=) Lo 1 T(,0) Iy’ L+ Rk, m)*/
<l+k j z)
-m 0 m

- wmf b
-

- m

z+k>
i

' *HI+r i 1
X(»)-,ZHT(_}.)”‘)',yi+;">}/(_7n ]0 H?).

Using property (2.13) of the 3-j symbol, together with
the property that an odd transposition of the column
introduces a factor of (- 1)/1*/2%s_ we obtain

(y! L+ RITOIY 1)

(=1 IIT(DIy? 1 +R)%, (4.6)
so that
Cyalym [(A™MT [y, 1+ ke, i)
-1)*(21+1 iy
:((2l3_2———-(k—+1-)—)(y,l,m iAl’ik v ik, m). 4.7)
Hence
@y, = 21+ 1)/ (21 + 2k + 1), (4.8)

Using the definition of A? in terms of B¥, one easily
finds

Gy Lym [(BY ]y L+ ke ym)

=a, (v, l,m | By i +k,m). (4,9)

Equations (4.1) and (4. 8) imply that if one replaces
{ by R in the expressions for O3*, the resulting operators
satisfy the hermiticity relation

(O"(2R+1)=0*2R - 2k +1). (4.10)

This can in principle be verified directly once one knows
the form of [Qu,R], and will be done for the particular
case of J=1 in Sec, 6.

It is clear from {4.1) and (4.8) [or from (4.10)] that
the O(3) scalar operator O is Hermitian and therefore
has real eigenvalues which may be used in specific
applications to provide a partial label for the states
lv,1,m) as, for instance, was done in the case of IUR
of SU(3) analyzed with respect to an O(3) basis, *:2

Finally, observe that, if one wishes, one may define
shift operators G* satisfying (G**)' = G** by
G*=0*2R +2k +1)2R +p + 1)1, (4.11)

This, however, reintroduces R into the denominator and
so may not be particularly advantageous.
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5. HERMITICITY PROPERTIES OF THE Of 12

Unlike the case of integral j considered in Sec. 4, one
cannot adopt definition (4.5) for half-integral j, since
such a definition would not be self-consistent. If one
takes the Hermitian conjugate of (4.5) and replaces i
by - i, one obtains

T, W) = (=170, - 1)# (- DET(j, ~ 1)

if 1 is half-integral. For this reason one is therefore
compelled, if one wishes to bring hermiticity into the
analysis, to consider, for half-integral j, a new set of
operators T(j, i), i=—74,...,j, which form a (2j+1)-
dimensional tensor representation of Q(3) and whose
commutators with [, and [, are exactly analogous to those
of the T(j, ).

It is trivial to check that the following hermiticity
condition is self-consistent:

TG, 1) = (= 19T, = ).

All the computations conducted in previous sections in
deriving shift operators BAr2/2 Ak41/2 anq Oh3!/?
can now be taken over when using 7(j, u). The operators
Bral/z  Akel/2and OF:/* thus formed will have
exactly the same properties and mathematical forms 1n
terms of the 7‘(]‘, i) as do their counterparts in terms of
the T(j, 1),

(5.1)

Following the manner in which the constant of pro-
portionality a, , of the previous section was found, one
obtains the following relations:

(y' lek,m+ 3]0 2]y 1, m)

lym

(=1)i*1/2(21 +1) N
:W;Tfm-“l sy + 2 [ O [y, L)

(5.2)
and

' lxk,m —%[O,"";n'l/z)y,l,nz)

Biroer D Otk - B[O s L m).

(5.3)

Note that care has to be taken when deriving (5.2) and
(5.3) since they involve terms like

(l i l+EV
-m ~5 m+%)°

which have imaginary phase factors.

In operator form, (5.2) and (5. 3) become

O***1/22R 3 2k + 1) = (= 1)*2/2(07-1/2)T (2R + 1) (5.4)
and
O /23R £.2k + 1) = (= 1)/3(0**/3)'"2R +1).  (5.5)

(5.4) and (5.5) can in principle be derived once one
knows the commutators [@},,R] and [@;,,R]; this will be
illustrated for the case of j=13 in Sec, 7.

6. EVALUATION OF [R,Q,]

In this section we obtain expressions for [R,Qu] and
show that [R, @, ](2R +2j) - - - (2R — 2j +1) involves only
terms of the form @, multiplied by positive integral
powers of R and Z,,.
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We make use of the fact that, for k=—j,...,j,
(R, BY]= kB! (6.1)

providing, of course, the above operators act to the

right on fy,l,m). In terms of the P, of (2.5), this
becomes
7 j j l l+k
[R,P, 1= 20 k(2 +2k+1)

e k=-j

-4 mt+u —m

% j l L+k p
- om+p —m ) B
where we have made use of the orthogonality relation

(2.8). Employing (2.5), we get the following expression
for [R,®,,], where pn=—j,...,j:

(R, @,

2[(z+m+u)'(z- )]fwz
e (G g

(l+m) (l—nz i )l]T(u')/z

(l+m+ (I - m)!

4,
X{ZJ 21+2k+1)( ! ”k)
k==j L mtp —-m

(6.2)

L+k I
- m); Qs

Using arguments similar to those employed in Sec. 3,
it can be shown that the coefficients of @, in (6. 2) con-
tain no /- or m-dependent SR-D terms except for the
term (21 +2j)---(21 - 2j +2) in the denominator if j > 1,
Otherwise, [ and m occur entirely in the numerator and
to integral powers.

><<] :
wom o+ op!

where T(uy=p/ .

Consequently, the only SR-D part appearing, for a
fixed k, in any of the coefficients is (21 + 2k +1)/(2] +j
+k+1) (2l —j+k +1). Summing over k from —j to
j, we see therefore that these coefficients contain the
term (21 +2j)---(2/ - 2j +2) in the denominator if j= 1,
and no such term if j=0. Replacing I and m by R and [,
and ensuring that R and [, appear to the right of @,
we obtain from (6.2) expressions for [R,Q,] in terms
of @,., l,, and R which do not depend for their validity
on their actions on any particular state. Furthermore,
[R,Q,](2R +2j)- - - (2R ~ 2j +2) (or [R, Q] if p=0), is an
operator in which R and [, occur only to positive powers,
together with the @,

We end this section by giving [R, Qu] for the particular
case when j=1, and considering two uses for these
commutators. Their values are given by

IR, Q,JL*(2R +1)
=(1/V2)Q,,(2L2 + 1)) + Q,(L? + 12) + (1/V2)Q_,(2L? - 1)

(6.3)
and

(R,Q,,]L?(2R+1)
=%3Q,, (L2412 1) 21,1, £1)) = 3@, (L% - I,(1,+ 1))
+(1/V2)Q(L2QL? = 212F 1) 21+ 1)).

The first application of these formulas is in the direct
verification of the hermiticity relation (4.10). They are

(6.4)
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not needed to verify the hermiticity of 0° since R does
not appear in its expression. However, using (2. 1),
(2.2), (3.33), and (4.5) in its expression, we have

(O = —(R-1,+DQ_, + VIR -2 - 1)@, —
== Q B+, +1)+ V20 (R?

(R+1,+1)Q,,
--1)-Q (R
- [R9 Qﬂ] + \/_E[R25QnJ "'[R,(L)_l]-

—1,+1)

(6.3) and (6.4) must now be used in order to proceed
further. A straight forward calculation, whose details
we omit, does yield (OY'2R+1)=0"(2R - 1), in
agreement with (4.10).

As a final application of (6.3) and (6.4), we write
down the commutators of R with the 7'(1, 1) themselves.
[R,T(1,0)] can be obtained directly from (6.3), and then
one uses

(R, 7(1,21)]=1/Y2)1,,[R, T(1,0]]

The results are

(R, T(1,0]L2(2R + 1) = (1/V2)T(1, - 1)I,(2L2 +1,)
+T(1,0)(L? +12) + (1/¥2)T(1, DI(2L% - 1,) (6.5)

and

[R, T(1,£ DJ@R + 1L =+ $T(1, £ I(L34l,2 3) F (1, £ 1))

+(1/V2)1(1,00,(2L2 %1, - 1) - (1/V2)T(1,51)i%, (6.6)

7. EVALUATION OF [R,Q:,] AND [R,Q; ]

Here one finds an equation exactly the same as (6. 1),
but with B}:*'/? replacing BY. Using this and the
orthogonality relation for the 3-j symbols, one obtains,
for p== i:" ° ’ja

H 1yy ' 1yt 1/2
i ] > Uem+p+)10Fm—p —z)-]
lR’Q*“]‘ulf,J/z[(l%‘m—u-—g)!(lim+u'+:§)!

£ l 1+
X{Lk(2l+2k+1)( kl)
=mj FU mtprs —mF

o ! [+k .
T omzp' s —mF o

(lim+u+é)!(l¥m+ﬂ'—%)!]
Fvm—p=N0xtm-p’+ 3!

[+F
-mF3

(7.1)

x

~

1/2

L\/“a.

+

pr=l/2

<

FiLomE L
Lk |,
_m:F'% ) Fure

and ) 1/2
7 1 1
b (xtm-—p+3)10Fm-p' = !
x] __
[R,Q¥]7ul=1/2[(l;m+ L= xm+ p + )N

I+k
_mqi%

><{Ek(21+2k+1)< t
k=i

T

i I
X ) i
+ W mF U s

{Tk(21+2k+1)( t

ey L mFpEs

Jj l L+k ,
be$ 1 .
Fu o omip sy -mFg)) o

1/2
N %Lwl [(lim-u+%)!(l¢1n+u'—%)!]
QFm+u—-Uzm-p +3)N

u=1/2
L+k
{7‘ (21 + 2+ 1)( ! ,1,)
—-—mF
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wf 7 l l+k -
t U mFIu ey —mFF)) O

One may again show that the only - or m-dependent
SR-D part appearing in the expression for any of the
above commutators is the term (21 +2j) +* (21 - 2j +2)
in the denominator.

The results of specializing (7.1) and (7. 2) to the case
of j=3 are

(R, Q% . J@R+ 1) =% Q% ,,(20,+ 1) + @2, ,(RF 1)

X(Rl,+1) (7.3)

and

[R,Qil/z](2R+1): :I/ZiéQ:1/2(2loil)! (7'4)

from which one easily obtains
(R, T, +D]JQR+1)= T(5,¥ ), 23T (5, + )21, 1).
(7.5)
Finally, from (3.35) and (3. 36), we get
(O V2t — 2] T(3,+3) 2 (R21,+1)T(5,%3)
and
(O V2t =51 T(4,£3) F(RFNT(E,7 3),
which yield
O™1/BR/2(9R) = £ (01/2#1/2)'(2R + 1), (7.6)
OY/2:#1/2(3R +2) =+ (O 241/2)1(2R + 1), (7.7

These agree with the previously obtained expressions
(5.4) and (5. 5).

8. CONCLUSION

The detailed properties of the shift operators
considered in this paper, although rather technical,
have already proved extremely useful for the classifica-
tion and analysis of the IUR of groups such as SU(3),!+%°
S1(3,R),* and O(3)A (T, xT,).° They are equally
applicable to groups such as SU(2,1), a new group
SU(2) A (T,~T,), which is the central extension of
O(3)A(T,xT,), and to the graded di-spin Lie algebra of
Corwin, Ne’eeman, and Sternberg,'®7!® in all of which
cases only the j =} shift operators occur; the authors
hope to consider some of these applications in later
papers. Clearly they are applicable to any Lie algebra,
graded or otherwise, which contains the O(3) or SU(2)
algebra as a sub-Lie algebra, although for j> 2 the
analysis would be bound to become very complicated.
Shift operator techniques have many advantages over
other methods of analyzing group representations.
First they apply equally well whether or not the group
is semisimple; also they do not depend on any specific
realization of the IUR in terms of, for instance, a set
of functions defined over some space, or based on
creation and annihilation operators which are often too
specialized to give an exhaustive classification.

Shift operator techniques have been developed by
several other authors. Some of these,”™® as already
mentioned, are just particular examples of our Of
operators for j=1, For instance, the O;" given in Eqs.
(3.33) and (3. 34) yield, on change of notation, precisely
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the third components of the vector operators O, and O,
of Stone”: the other two components of Stone’s operators,
as well as shifting I, also shift m by 1.

The most important general classification of shift
operators is due to Nagel and Moshinsky,!® Pang and
Hecht,!! and Wong.'? In all these cases the shift opera-
tors act on the Gel’fand—Zetlin basis states'®; Nagel and
Moshinsky derived shift operators for the canonical
chain of groups U(r)>U(r - 1)> - DU(1), whereas Pang
and Hecht!! and Wong!? obtained analogous set of
operators for the chain O(#) >0 -1)D**D0(2), These
operators which, like the ones constructed in this paper,
are contained in the enveloping algebra of the Lie
algebras under consideration, act on the Gel’fand—
Zetlin states in such a way that a basis state
corresponding to the highest weight of an IUR of a sub-
group contained in the IUR of the group is taken into a
basis state corresponding to the highest weight of a
lowered or raised IUR of that subgroup. They therefore
also raise or lower the eigenvalues of the Casimirs of
that subgroup, just as the ones developed here raise
or lower the eigenvalues of the Casimir L? of O(3) or
SuU(2).

The difference between these operators and our O’;
operators is best illustrated by considering the parti-
cular case of the chain O(4)>0(3). Lohe and Hurst*
have written down the L} operator of Wong'® explicitly,
under the name of L_, in Eq. (4.19) of their paper. L_
acts on the Gel’fand—Zetlin state

L My m, m,
to produce the state ;—i

Thus L_ lowers both [ and m by 1, as does our operator
O7'l_, where O is given in Eq. (3.34) of this paper.
However, whereas O;‘l_ lowers 7 and w by 1 whatever
the m value of the state, L_has this effect only when
acting on the state for which m = [. For m#1, L_does
not act on the [ value of the state in this clean manner.
It could not, since it does not depend explicitly on the [
value of the state, as do the O} One may, in fact,
easily check that if in Eq. (3, 34) for O;" one
postmultiplies by I_ and then replaces R by [, (which
one may only do for the particular case when it acts on
a state for which m =1), one obtains, apart from an
over -all multiplicative constant, precisely the L_
operator of Lohe and Hurst.

Thus, more generally, the difference between the
1-shifting operators acting on Gel’fand—Zetlin states
and the ones developed in this paper is that, whereas
the OF operators shift / in a “clean” manner whatever
the m values of the states, the former do so only when
acting on states for which m=1.

Clearly it should be possible to extend the results of
this paper to the construction of analogous shift opera-
tors for more general groups, such as O(xz) and U(n).
For instance, the TUR of O(r) can be uniquely labelled by
a set of parameters a,,... sA,, Where p is the integral
part of 3n, which take on either all integral or all half-
integral values. Bracken and Green?’ show that an O(n)

vector operator 8 may be resolved into parts 6§,... ,9:
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where, for i=1,...,p, 6; shifts the i, value of a state
upon which it acts by +1; when n=2p +1, 8 also has a
resolute 6° which leaves the values of all the »,
unchanged. For the case of O(3), these resolutes are
just the j =1 operators O?' and O] given in Egs. (3.32)—
(3.34). A true generalization of the present work to
arbitrary O(n) would also generalize the results of
Bracken and Green to the case where shift operators
are constructed using, not just a vector operator, but an
arbitrary tensor operator of O(n). One would then ex-
pect to obtain shift operators which change the values of
the »; by amounts other than +1.
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A transformation is used which enables one to carry out exactly the integration of the Hill-Wheeler

integral for the rotational energies. The expression for the energies E; is shown to be the ratio of two
polynomials in J(J +1), where J is the total angular momentum. A nice feature of the formulation is
that the coefficients in the expansion involve only the matrix elements of the lowest rank independent
HJ ¥ and J? operators, 0<r<N—1, N being the number of J states contained in the given rotational

band, and H being the Hamiltonian of the system.

1. INTRODUCTION

The Hill-Wheeler integral® has been very useful in
generating a collective nuclear wavefunction. It was
shown by Peierls and Yoccoz?® how this integral can be
used to calculate the energies of the collective rotation-
al levels in nuclei. Using the intrinsically deformed
Hartree—Fock wavefunctions, Ripka® had carried out
an extensive series of calculations for the energy levels
of 2s - 1d shell nuclei. These calculations were quite
successful in reproducing the energy levels belonging
to various bands. From the analytic point of view one
would like to integrate over the Euler angles and obtain
a closed form expression for the energies. In the ori-
ginal work of Peierls and Yoccoz,? they had expanded
the rotation operator in a power series and by keeping
the first two nonvanishing terms had derived an expres-
sion for the nuclear inertia parameter. Following this
approach, Sharon® had derived explicit power-series
expansions for the projected energies for any nucleus
when it is strongly deformed. The purpose of the
present work is to show that one can use a linear trans-
formation of the rotation matrices to write this inte-
gral as a polynomial in J(J + 1), where J is the angular
momentum of the rotational level. In Sec. 2 we describe
this formulation. The concluding remarks are pre-
sented in Sec. 3.

2. FORMULATION

We write the energy E, of a level in a rotational
band as

E; =Num;,/Den,, (1)
where Num; is given by*:®

Num, = fo' dB singP, (cosp){(® ‘ H exp(- ifJ,) } ), (2)

and Den; is given by the same expression as (2) with
the Hamiltonian H replaced by the unit operator. In
expression (2) P; (cosp) is the Legendre polynomial and
J, is the y component of the total angular momentum.
The wavefunction |®) denotes an intrinsic wavefunction.
The intrinsic wavefunction {®) which we shall consider
is made up of deformed single-particle wavefunctions
generated either by Hartree—Fock calculations or by
Nilsson’s method?® and the values of J contained in such
a wavefunction range from some minimum value of J,
1y 10 SOMe maximum value J_,,. For simplicity we
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have taken the case in which the K-quantum number?>
is zero and therefore the various J states included in
|®) are J=0,2,4,...,2(N - 1), N being the total num~
ber of J states contained in |®). For such a |®), J,,
=0 and J_,=2(N - 1), Since our aim is to express
Num,, Den, as a polynomial in J(J + 1), we can first
try to see if we can use one of the known polynomial
expansions for the Legendre polynomials P, (cosB) for
(J =2n) which are given by Erdélyi.® These expansions
which are given in terms of hypergeometric functions
do not seem to be suitable for our purpose, since (1)
the coefficients of various powers of the trigonometric
functions sin and cos are themselves combinations of
various powers of J(J+1) [J=0, 2, 4, ..., 2(N =1)]
and thus we have to regroup them to pick out the co-
efficients for each power of J(J +1), (2) each Legendre
polynomial is represented by a polynomial of a dif-
ferent degree, and (3) for some representations one
cannot work out the matrix element

(d:v'Hexp(— i3J,)1®) in a simple way.

It seems that the best way to achieve our goal is not
to use any of these representations but to make the
following linear transformation among the Legendre
polynomials: We introduce a set of new functions
U,,(cos B) using the following transformation:

N=l

Pfcos B)=23 [JWJ+ 1)) U, (cos B), (3)

r=0

for =0, 2, ..., 2(N -1). WritingJ=2xr (=0, 1, ...,
N -1) we can also write (3) as P,,= ¥ [2n(2n + 1)]" U,,.
Since the determinant of the matrix M formed from the
coefficients of expansion in (3) is nonzero, we can

write U,, in terms of P, as

U=M1Pp, (4)
where U denotes the column vector
U

2

UZ(N-].)

and P denotes the column
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P2(N-1)

and the matrix elements of M are given by
=[2i(2i + )}, (5)
i, j=0, 1, N -1; with M, =1.

Explicit expressions for some of the U’s will be given
in Sec. 3.

Since |<I>) is a linear combination of the wavefunc-
tions 1\11.,}, =0, 2, ..., 2(N~1), we can write
2(N-1)

@)= 2o

c,jlllj), (6)

with J,¢% =1.
Let us now consider the evaluation of the matrix

element (& |Hexp(— igJ,) |<I>)., Using the expansion (6)
we get

(¢ |Hexp(-ipd,)|®)
2(N=1)
= 2,3y, fexp(- i) ¥ ),
since H and exp(- iBJy) cannot connect different J states.
Further, since H is a diagonal in J representation, we
can write

(@ |Hexp(-ipJ)|@)
=212 E, (¥, |exp(-ip] ) |¥),

where E,=(¥, [H ¥, ). Remembering that we are con-
sidering the case for which K =0 and (\Ifm[exp( zﬁJ

X ¥, is just Py(cosB) we get
(@ |Hexp(~ iBJ,) )= Ec:‘}EJPJ (cosf).

Putting in the expansion of P, (cosB) from (3) in the
above expression and writing the double summation as

(@ |Hexp(-i&J,)|®)
2(N-1)
TUZT(cosB 27 C2E,[JU+ 1)
J=0,2

and expressing the summation over J as a matrix ele-
ment of the operator HJ?" between the intrinsic wave-
function 1(1)) we finally obtain the expression

<¢1Hexp(—iBJy)yq>>:NZ-) (|HJ* |) U,, (cosp). (m

Putting expression (7) in expression (2) we get
N-1

Num,, :Z(HJ""U:dB singP, (cosp)U,, (cosg). (8)
7=0
Using expression (3) we can rewrite Num, as
N=1 N~=1
Num, =24 Z,:[J(J+ DIS1, (HJ*™), 9)
where
I, = |." dasing Uy, (cosp)U,, (cosp). (10)

Using expression (4) and the orthogonality relations
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for the Legendre polynomials we get for [,

Nz-f -l 2 -1
=t=O(M ),tm(M )ge (11)
Denoting by a, the following coefficient:
N=-1

a, =,Z=§ 1, (HJT), (12)
we find the Num, is given by the following polynomial:

NumJ:s'i:;as[J(J+ P, (13)
while Den, is given by the polynomial

N-1
Den, :szzga;[J(J + 1. (14)

The coefficients a/ are given by expression (12) with the
operator H replaced by unit operator.

Therefore, we have shown that by carrying out the
integrations exactly we can write the energies E; as
the ratio of two polynomials in [J{J +1)].

3. CONCLUDING REMARKS

The first remark which we would like to make is that
the coefficients a,, and a; in the polynomials expansion
involve only the matrix elements of the lowest rank
independent operators HJ%, J”:0<»<N-1. In
numerical computations it is certainly advantageous
to have expressions for E; which involve the matrix
elements of the lowest rank operators.

The second remark is that the energies E; can also
be written as a polynomial in [J{J +1)]. This can be
easily done using the operator identity”:?

T [/ - 20)(2i + D)]=0, (15)

i=0

and writing

Num,
= + 1
E, Don, UEOZ)[ W+ 1. (16)

The coefficients b, can be easily found in terms of a,
a! using the identities (15), (18). To see this let us
consider the expansion of the following simple function:

FEH =0 +x)7,

for the case where the intrinsic wavefunction ¢ ) has
only two angular momentum states J =0 and 2. For this
case the projection operator relation (15) gives J*=6J°,
If we now expand f in a power series using binomial
theorem, then because of the relation J*=6J°, we can
express all powers of J2" higher than J° in terms of J°
only. Thus

1+ =1+ gJ%.

To determine g, multiply both sides by (1 +xJ?) and use
the relation J*=6J%, which gives g= - (1 +6))"
Finally taking the matrix elements of the above poly-
nomial expansion between good angular momentum
states gives the desired result:

[1+AJ+ D] =1 =21 +60)WJJT + 1),

Because of our remark at the beginning of this section
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the coefficients b, will also contain only the lowest
independent operators HJ?, J%7; 0<r<N-1. The
polynomial expansion for E; has also been obtained
using different approaches® ° with the coefficients
involving the matrix elements of various power of the
operator J,J_.

Finally as a check on our formulation we have cal-
culated E,’s for '*C nucleus® which has K=0 and
J =0, 2, 4. The functions U,, U,, U, for this nucleus

which can be worked out using expression (4} and (5)
are given by

uv\=/1 0 0 Do
L11-8 & -l 22 ) 1
U4 ré'o "514 Téb P4

Using expression (5), (11), (12), (13), and (14) we find
that E ;_.+ is given by

_{H) -G (HI?) + g (HI*)

E. .=
A P ey

. (18)
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The matrix elements HJ%, J?7;0 < <2 can be easily
calculated!! and when substituted in expression (18)
give the same value for E,_+ as the one obtained by
numerically integrating the integral® given by expression
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Vector constants and their algebras for classical

Hamiltonians

Thomas P. Mitchell

University of California, Santa Barbara, California 93106
(Received 25 October 1977)

The explicit form of a vector constant of the motion for an arbitrary relativistic spherically symmetric
time independent classical Hamiltonian is obtained by showing that its construction is achieved on solving
a linear second order ordinary differential equation. The solution of this equation is presented and the
vector, in conjunction with the angular momentum to which it is normal, is used to generate the algebras
of the Euclidean group E(3), the orthogonal rotation group O(4) and the special unitary group SU(3). The
mass is assumed to be structureless and to move in an externally prescribed scalar potential field.

I. INTRODUCTION

The algebra of scalar functions of position in
classical mechanical phase space! is an infinite
dimensional Lie algebra if the abstract Lie bracket
is realized in the form of the usual Poisson bracket.
The resulting Lie algebra contains the set of all
constants of the motion as a subalgebra of which the
set (0, ), & being the Hamiltonian, constitutes an
ideal. The relationship of Lie algebras and Lie groups,
which are appropriately realized by canonical trans-
formations, to classical mechanics is treated at length
by Sudarshan and Mukunda® who 2lso examine the group
theoretical and symmetry properties of particular
dynamical systems. The relationship has also been
discussed, for example, by Mukunda®?* and Fradkin. ®
The possession by a system of certain symmetries
normally implies the existence of scalar constants
of the motion. Similarly vector constants of the
motion are intimately connected with dynamical
symmetries, The existence of a vector constant of
the motion, normal to the angular momenfum, has
been established using group theoretical methods by
Mukunda® for spherically symmetric Hamiltonians
which describe the motion of a point mass in three
dimensions. Because the process of evaluating a
Poisson bracket invokes first order differential
operators it follows that the existence, and more
importantly the determination, of vector constants
might be amenable to analysis in a differential oper-
ator-as distinct from a group theoretical —formula-
tion, The present purpose is to show that this expecta-
tion is met and thus to provide a straightforward
procedure for determining explicitly the vector constant
of a three-dimensional, single-mass spherically
symmetric Hamiltonian. The point mass which is
structureless, possessing zero spin and no dipole or
higher multipole moments, is assumed to be moving
under the influence of an externally specified scalar
potential field. It is shown in fact that the determination
of the vector can be reduced to finding the solution of
a second-order ordinary differential equation thereby
coincidently establishing its existence, The main
result of this paper is the derivation of a simple ex-
plicit general expression for the vector constant.®

In addition, a method of utilizing this expression,
in conjunction with the angular momentum, to generate
the algebras of the three groups E(3), O(4), and SU(3)
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is presented. The sole requirement in the analysis

is that the Hamiltonian be spherically symmetric.
The explicit functional form of the Hamiltonian enters
only when the vector constant is being derived for a
specific dynamical system. Accordingly, both rela-
tivistic and nonrelativistic systems are included in
the following discussion.

Il. DETERMINATION OF THE VECTOR CONSTANT

A time independent vector variable F is a constant
of the motion if its Poisson bracket [F, 4] with the
Hamiltonian is zero. To simplify the notation and in
order to emphasize its operational nature the
Poisson bracket of two functions [f, g] will also
occasionally be written in the form |g|f. The bracket
is evaluated in a phase space of six dimensions, one
for each of the cartesian components of the 3-position
vector r and one for each of the components of the
3-momentum p. The dynamical scalar variables of
the single mass system are functions of the magnitudes
» and p and of the angle between r and p only. Con-
sequently, a scalar dynamical function is denoted by
F=F(r, p, 1) where I = |rxp| is the magnitude of the
particle’s angular momentum and the Poisson bracket
is
7‘2[)2 _ 12)1 /2

L7, g)=lelr= L=

where subscripts denote the partial derivative with
respect to the corresponding variable. If the vector

F is assumed to be orthogonal to the angular momentum,
then its general form is

F=f(r, p, Dr +g(r, p, 1)p, (2)

where the coefficients f and g are arbitrary scalar
variables. The condition that F be a constant of the
motion is then

(frgp-fpgr)7 (1)

ghp +[h]g=0 (3)
and

%hr_ [h]f:O, (4)
which constitute a parabolic system of partial differen-
tial equations,” In the derivation of Eq, (3) and (4) the

spherical symmetry of the Hamiltonian has been
assumed, If neither i, nor &, is zero these two equa-
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tions lead to the consistency condition

(rf+ ug,)(pg+ ufp) —f,gpuz =0, (5)

where the symbol u = (#p? = I*)*/? is introduced for
conciseness.

On using Eq. (3) to eliminate the function f from
Eq. (4) one finds that

ok )%+ riy([R]g) K] h—P + g =0. ®)
P

Equation (6) is a linear second order partial differential
equation which determines the function g once the
Hamiltonian is prescribed. Eq. (3) subsequently
determines the function f and hence the vector F is
known. It is seen, on using Eq. (1), that the differential
equation (6) contains derivatives with respect to »

and p only: the angular momentum [/ appears merely

as a parameter. An examination of the coefficients

of its second order derivatives shows’ that the equation
is parabolic everywhere independently of the form

of the Hamiltonian. Accordingly, it has just one
characteristic along which, as is to be expected, the
Hamiltonian remains constant. The equation is thus
reduced to canonical form by introducing, in place of

v and p, two new characteristic variables viz. the
Hamiltonian A(r, p) and any arbitrary function n(r, p)
which is independent of k. The canonical form of Eq.
(6) is

”2 (h’Pnr - hrn D)Zgnn +{"2 (h.bznrr - zhrhﬂn rp + h’r2n PP)

2

2
_<r"’ph, - %h,,)h,,n . —[-l; ki, + uz<h,,h" - 2h,h,,

+ ’-’ﬁhﬁ) - rzphrz]np} g v rphhg=0 (7
which is seen to be a degenerate form in the sense that
it contains derivatives with respect to the variable

7 alone. It is, accordingly, a second order ordinary
linear differential equation whose coefficients are
functions of 7, h, and /. The latter two quantities
appear as constant parameters. This equation deter-
mines g(n, &, 1) which in turn determines g(7, p, 1)

and (7, p, 1) and thus the vector F. Because the equa-
tion is second order it has two independent solutions.
It is easily seen that one of these solutions determines
F while the other determines a second vector constant
which is tantamount to

G=I1XF=— (uf+gp®)r + (ug+fr)p. (8)

111. CONSTRUCTION OF THE VECTOR

The motion of a particle with rest mass m subject
to a 3-force derivable from a potential ¢(») is governed
by the Hamiltonian®

12=(mzc“ + Czp2)x /2 + ¢’ (9)
in which,  being the inertial mass,
h=mc*+¢=E (10)

is the total energy and consequently a constant. If one
chooses the function n(y», p)=7», Eq. (7) takes the form

g, + (P, + P/ ¥)g, - r4,g=0, (11)

2083 J. Math. Phys,, Vol. 19, No. 10, October 1978

where

v=(E - 0)/2¢. (12)
However

u=[(2¢y - m*E* - *T/2
and thus a solution of Eq. (11) is

g =7[expid(»)], (13)
where

» Idr
6 =] r[(2¢ - m2cD)¥P = P72

(14)

and 6(7) is related to the angular position of the mass
in its orbit. Equations (3) and (13) make it possible to
express the function f in the form

f:_%gr . (15)

Therefore, on taking the imaginary part of Eq. (11),
one obtains

F=-— (usin9+lcos{9); +9psing (16)
_1xr sin@——lrcosf) (7
v v

and thus 7 =F/[ is a vector constant of unit magnitude.

These expressions generalize the Runge—Lenz vector
to include all spherically symmetric relativistic
Hamiltonians of the form (9). They include the non-
relativistic case if, in Eq. (14), the guantity (24
— m?c?) is replaced by 2m(E - ¢). Some solutions of the
nonrelativistic form of Eq. (7) for gravitational
potentials have been presented elsewhere.® In particular
it has been shown that the usual Runge—Lenz vector
corresponds to the solution when the Hamiltonian is
that of the nonrelativistic Kepler problem,

IV. GENERATORS OF E(3} AND O{4)

If the vector F is constructed from the solution pair
(f, g) of Eq. (3) and (4) then M =RF is also a vector
constant determined by the solution pair (Rf, Rg),
R(», p, 1) being any scalar constant of the motion,

A direct calculation utilizing the consistency condition
(5) shows that

1 3 2
(M, M,]=~ 37 €oinle -aT(RzFﬁ (18)
and
[2;, M,] =€;,,M,, (19)
in which ¢, ,, represents the permutation tensor, the

summation convention is implied, and the subscripts
range over the values 1, 2, 3,

By choosing R=S5/1, S(#, p) being an arbitrary
constant of the motion independent of i, it is seen that

the components of the vector M =S7/F and the angular
momentum 1 satisfy the bracket relationships

[lj, lk]zej,mlm, (20)
[M,, M,]=0, (21)
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[t;, M,]=¢€,,,M,,. (22)

Jem " m

Accordingly, M behaves like a vector under rotations
and together with 1 generates the algebra of the
Euclidean group E(3) in three dimensions. The two
Casimir invariants are zero and unity. On the other
hand if one chooses

Rz, p D=I[S(r, p) - PT1/?/1, (23)
S(7, p) being again an arbitrary constant of the motion
independent of [, e.g., the Hamiltonian itself, then
the relation (21) is replaced by

[M M ] € imbme (24)

Equations (20), (22), and (24) show that this second
choice of R produces a vector M which generates,
together with 1, the algebra of the orthogonal rotation
group O(4) in a real four-dimensional space. The
Casimir invariants in this case are Zero and the
function S(#, p).

V. GENERATORS OF SU(3)

A representation of the special unitary group SU(3)
can be constructed as follows from the components of
the constant unit vectors 7=F/7 and § =1X7/l together
with those of the angular momentum. The vectors F
and ( satisfy the bracket relationships

}J’ }k g]’ gk (25)
L 751=-6 l§~= ) (26)
75 Gel= 1T GJ]= Jk—mk GGl @)

in which 6 ,, is the Kronecker symbol. Accordingly,

the second-order symmetric traceless tensor
To=il(F,7,~ GG, i=V-T, (28)

establishes, with 1, the closed algebra
(Lo Tl =
(T

T, +e T (29)

kmr nr knr - mr?

mn? Trs]: (émr nst + 6ms nrt + 5nremst + 6nsemrt)lt' (30)
Thus the five independent components of the tensor

T, together with the three components of 1, which
generate the group SO(3), form the eight generators

of SU(3). In fact, by making the identification
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i .
L= (T, % 20T, - Tsy),
-1 -
13:_2—135 Y:'Z_(T11+T22),
U,= 2\]'2‘ (Ltil, +T3xiT,, ),

V,= j%(lﬁilz - Tyax iTs3),

one can establish that

1
U, L]=+1, 4, Ut]:%CiU [z

3 & +9

I8

s V+]:[1+, U-]:
ly, U,]=+U,,

[U+; V+]: [Y, It]: 1137 Y]:O)
Y, vJ=xv,, [, L]=2L,

[U*-) U] %Y_II*)! [V+’ Vn]:gY-'_IS’
[[+’ V-]:_U-’ [I+, U+]:Vu [Un V—]:I-

which is a standard representation as presented,
e.g., by Fonda and Ghirardi.!°
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The concept of a deformed Lie group in which the structure coefficients are functions of the group
coordinates is defined. Every Lie group can be deformed outside any of its subgroups. The affine group in
four dimensions deformed outside Gl(4,R)has a variable group metric that is closely connected with the
Ricci tensor of the four-dimensional manifold of translations. An analog of Einstein’s vacuum equations
expresses the invariance of the metric with respect to the deformation. An enlargement of the affine group
leads naturally to the appearance of the energy-momentum terms in the equations, while the
gravitational interaction constant plays a role of a fundamental group constant (like ¢ in the Lorentz
group) which makes all generators of the gauge group dimensionless.

INTRODUCTION

It is well known that the general relativity theory can
be considered as a theory of connections in fiber
bundles with Lorentz structure, where some kind of
identification of the points in the bundle manifold with
linear frames of the base manifold (space—time) must
be provided (see, e.g., Ref. 1), In order to make this
identification a natural part of a mathematical system,
one can enlarge the Lorentz structure to include trans-
lations, the additional components of the connection
form providing the identification (they are identified
with the canonical form of the bundle of linear frames).
Such an approach was investigated, e.g., in Refs. 2
and 3. A different approach to the same question is to
consider the whole fiber bundle as a homogeneous
mathematical system, namely a Lie group, where the
identification is provided by the group action, For ex-
ample, the properties of the Minkowski space are con-
tained in the geometry of the Poincaré group, where
the space—time is the subgroup of translations. It is the
flat Minkowski space which is described here, because
the generators of translations (defining the parallel dis-
placement) commute with each other. The structure co-
efficients related to translations are zero, and so is
the group metric. The questions discussed in the present
article are as follows:

Is it possible to introduce a deformation into a Lie
group in such a way that the geometry of the group
based on a set of variable structure coefficients and
the corresponding variable metric describes a space
with non-zero curvature? What role is played by the
group metric after deformation?

In Sec. 1 the concept of a deformed Lie group is
defined. Sections 2 and 3 contain a discussion of the
affine group in four dimensions, It is shown in Sec. 3
that the group metric plays the role of the contracted
curvature tensor and Einstein’s vacuum equations ex-
press the requirement of the constant metric in the
group space. In Sec. 4 a discussion of possible general-
izations designed to include matter fields is presented.

2 The present article was written while the author was visit-
ing the Department of Physics, University of Utah, Salt
Lake City, Utah.
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1. DEFORMED LIE GROUPS

Let G be a Lie group and K a subgroup of G. Select
a basis of the Lie algebra of G in such a way that X,
a=1,...,n, span the Lie algebra K of K, while vectors
X,, i=n+1,...,N, complete the basis. We shall use
indices a,b,c,d,e,f for K, and i,j,k,I,m,n for vectors
outside K. The elements of the Lie algebra are con-
sidered as vector fields (first order differential opera-
tors) in the group manifold. The structure coefficients
are defined by

x, x,]=Cc5,Xx,, [X,, X,]=C, X, + C, X, ,
X, X,]=0,X,+ &, X,, C,=0.
We shall say that G is deformed outside K if the
following conditions are satisfied:
(a) There is a set of real valued differentiable func-
tions By defined on the group manifold.

(b) Vectors X, and XNk:Xk +B2X_ (summation over re-
peated upper and low indices) form a basis of the tan-
gent vector space at every point of the group manifold.

(c} Commutation relations between X and )?k are the

same as in the undeformed group, i.e.,
(x,, X=X, +C, X, . 1

Equation (1) is a set of first order partial differential
equations for Bj, and it should be shown that they are
always integrable. Explicitly

[Xa,Xi +BX, =0 X, + O X, + B CL X, + (X, B)X,
and also
(X, X, + B X,|=Cb, X, + C*, (X, + B X, ),

where (X, B}) denotes the application of the differential
operator X on functions B? .

Equation (1) thus states
X, B)=C, B - 3, BY @)

This system of partial differential equations is con-
sistent if

Xc(Xa Bg) _Xa(Xc B’i) :Cza(Xd Bli,) (3)
is satisfied identically. Substitution of (2) into (3) yields
G Gt O € + €, €} =0
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and

G Cﬂe+Cchda+ngo:c=0°

ad e e
Thus the Jacobi identity guarantees integrability of

Eq. (2) and condition (c) can be satisfied for every Lie
group and each of its subgroups.

2. THE AFFINE GROUP

We select the basis of the Lie algebra of A(4,IR) as
follows:

L% span the Lie algebra of GL(4,IR), i,k=1,...,4,
and satisfy the commutation relations

(L}, Li]=6}L%-0% LL.
T, j= 1,...,4, span the Lie algebra of translations:
[T, T,]=0, (L, T,]==-08}T,. (4)

In the case of L} a pair of indices % is replacing a
single subscript a used in Sec. 1.

Consider a deformation of A(4,R) outside G1(4,IR).
We introduce

T,=T,+B}, L%, [Li, T,]=-08!T,. (5)

Vectors T, define coordinates x% in the subgroup of
translations T, in which T, =3/38x*, For the purpose of
later connection of the scheme with relativity we intro-
Juce also a general coordinate system x* in T:
3/0x* =d. T,, where d, =3xi/ax"*.

Now consider vectors

T,=d\T, =d\ T, + B L}

wi=r ?

where
R — Al RBR
Bm_duB”.

Calculate the commutator [f“ , fv] at an arbitrary
point x€T. Although evaluated on T, the dependence of
T,, L}, and B , on the coordinates of Gl(4,R) mu§t be
t?.ken into account (we are not projecting vectors T, and
T, onto T). Thus, using (4) and (5), we obtain

(T,, T,]=(,B}, —0,B,, +B, B, ~B B, )L

v-ur g e vitur

~ (6)
+ (B, - diB )& T, ,

where d? is the inverse (matrix) to d,.

To get still closer to the formalism of the general
relativity, we should rewrite (6) for an arbitrary cross
section T - a(x), obtained from T by an action of an
x-dependent element a(x)€GL(4,IR). Let df(x) be the
4x4 real matrix representing a(x) [exp @&(x)L} =a(v)],
and rewrite a’g(x) in a neighborhood of an arbitrary point
x,ET as

() =@ ()b (x) )

where @(x,) is a constant matrix, while b}(x,)=5. This
helps to derive the correct transformation of Bii when
T is changed to T - a(x).

Consider first a special case @ (x,) =8%, and rewrite

. 1 !
Fooagir +30% px 0%

i
* [P 1 Sk 1 aqu’;+Bﬁ1L; *

Vector d T, + (3b} /ax*)L* projects to the original
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derivative 3, in T, but it lies in T~ a(x). Thus it takes
the role of 3, when the functions to be differentiated are
evaluated on T - a(x) instead of 7. The transformation of
Bf” is then

By~ By, ~ 0,0} ®)

wy

On the other hand, under the action of a constant ele-
ment of G1(4,IR) functions B:, transform as

By~ @B, . ®

In fact, when @ are chosen as coordinates in G1(4,1R),
Eq. (9) induces the dependence of B}, on @ which com-
plies with the requirement (5).

Combining the two transformations (8) and (9) into one
general transformation of type (7), one can write

By, & W)BL a (x) - [0, & ()] (x) (10)
This is in fact a gauge transformation of the “gauge
field potentials” B . When rewriting Eq. (6) for an
arbitrary cross section, it is necessary to keep in mind
that the direction of 9, projected to 7 is not changed,

while vectors 7T, transform under ad a*(x). Thus d! is
transformed as

di— hilx)=dj(x) d, . (11)
Substituting (10) and (11) into (6), we obtain
(7,, 7,1=,B!, ~28,B,, + B, B, - B} Bj )Lk

~ (0,08 =3, + Wi, = W, B, )T

w?

(12)

where the effect of a constant transformation of type (9)
was included in the dependence of B!, on the Gl 4,R)
coordinates. A general cross section is characterized
by functions &, (x).

c?

We shall write down the result in the form of the
variable structure coefficients:

i s
C:,=9,B -8B, +Bi B -B B, 13)
Co,= = (0,5~ 3,0 + WBL, — W,BS ) . (14)

The remaining structure coefficients are easy to
evaluate. Requirement (5) implies that
u o

(L, T,]= ~niT

hence
G = —niig . (15)

i j
The structure constants of G1(4,IR) (i.e., C},) are,
of course, unchanged. km

3. GROUP METRIC AND EINSTEIN’S EQUATIONS

The geometry of the deformed affine group is identical
to the geometry of a manifold with an affine connection,
once the appropriate identification of the functions is
made. Namely, 7 (x) are the tetrads, connecting arbi-
trarily chosen local linear frames with those determined
by a general coordinate system, while B, evaluated on
a chosen cross section are the components of the con-
nection with respect to a mixed basis. The quantity

T, = 18,7+ By i) 16)
(independent of the choice of the cross section) is in-

terpreted as the usual Christoffel symbols. Equation
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(16) expresses the fact that 2 (x) has a zero covariant
derivative if considered as a second order tensor in a
mixed basis:

0, = U5 i+ By 1 =0

L2
Then C% =R{, is the curvature tensor in the mixed
basis, and C] =T, -T} = -1 is the torsion.

Let us find the components of the group metric from
the structure coefficients specified above.

i i
Guv = Clktuczl + O;g cﬁo + Cftoczp
=R;u0‘h§h? +Rlﬁwhﬁh: + tfmtzp = 2Ru.v + tﬁatza .

R,, is the symmetric contracted curvature tensor (Ric-
ci tensor). Further

Guz - Cfl.uoip = tﬁohlsh‘; ’
while the remaining components of the group metric
(i.e., Gik) are the same as in the undeformed group.

il

If we want to consider only the class of deformations
which do not change the metric of the group at all we
put

G,,=0 and Gu;;:O 1)

while the equations for G,, are satisfied identically.
i
Equations (17) reduce to
R,,=0 and t7,=0, (18)

which have the form of Einstein’s vacuum equations,
except that they concern a general affine connection.

Decomposing the “deformation term” Bith into the
Lorentz part and the rest, namely
B L% ~iB“fL‘.k +3DiK

urpTE T2 ik

where
Lyy=8uLly -8, L},
K=&, Lit&,Li,

and
Bik:%(g“Bf” —g”Bf”),
DR =3By, + B ),

we get the conventional Einstein’s theory in a special
case, when functions D!* can be made identically equal
to zero by a selection of a particular cross-section,
This happens when functions Di* on T are of the form
Di* =9, ¢i*, Selection of the gauge that annihilates Dix
can be made only up to an arbitrary Lorentz gauge
transformation; hence it is characterized by a total of
16 — 6 =10 functions of space—time coordinates, in
accordance with the number of functions ¢i* = ¢t,
Working with the particular class of cross sections
makes possible an introduction of the space—time
metric

8., ) =i, (X)RE(x)g,, -

Let us note at this point that should we begin with a
deformed Poincaré group instead of A(4,IR); a general
deformation outside the Lorentz group would lead at
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most to a nonzero torsion, but the space—time metric
would be necessarily of Minkowski type. It is thus
essential in this approach to begin with a larger group
like A(4,IR), which in turn brings in a larger gauge in-
variance like G1(4,R).

4. INCLUSION OF MATTER FIELDS

The appearance of only R, and {7, in the expression
for G,, is closely connected with the character of the
commutation relations {4}, namely with the fact that the
subspace (T,,...,T,) is left invariant by the action of
the Lie algebra of Gl1(4,IR). In this section we shall
briefly discuss an example in which such a condition is
not satisfied.

Consider the group G1(5,R). This 25-dimensional
group contains A(4,IR) as a subgroup, e.g., by the
following identification.

Let L¢ span the Lie algebra of GL(5,IR) and have the
commutation relations just as in Gl{4,IR) except that
a,b=1,...,5. Consider the full set of generators as
L%, L%, L7, and L}, where i,k=1,...,4.

We have

[Lf’ L?]: _GI;L?’ [L?; L:]:O:

hence the generators Lf can be identified with the trans-
lation in A(4,R). Further, the remaining vectors L%,
L%, and L] generate a subgroup, so that we can consider
a deformation of G1(5,IR) outside of this subgroup. We
have

(L%, T,]=L%-64L3, (19)
and let the deformation be described by

T,=T,+BjL*+ B} L%
or

T,=d,T,+Bj, L +B L,
where we assumed for simplicity that there is no de-
formation in L} direction.

The procedure analogous to that of Sec. 2 yields

(7., 7,]

=R}, Lt + (Wi B, - B, )L% ~ (W B3, - mB3 )L}

kv vuR uw T vR
+ (auBka - auBik + leBttUz - BilBlllk)Lg - t‘ZLVTG' (20)
Calculating G,,, we obtain
Guy=2R,, — 3(BS it + BLIR) + 6,1, (21)

We see that the new potentials B%, lead to an extra
term that can be connected with the energy—momentum
tensor of matter fields.

An interesting point follows from a dimension analy-
sis. In the system of units in which only the length re-
mains (say h=c=1), T, have dimension [length]!,
once interpreted as translations. L‘; are dimensionless,
B}, again I"'. From (19) it follows that L% is of dimen-
sion I, which leaves 12 for B:,. We may try to express
the theory in a form in which only the translations re-
tain the dimension I"! (as physically measurable quanti-
ties), while the generators of the whole gauge group
are dimensionless. This can be achieved by introducing
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a universal constant k of dimension /! and redefining
the generators

k L’; = L;k ’
where Lg* are dimensionless. The commutation rela-
tions (19) change to

(Ly*, T,]=«Lr- %L} (22)

and the expression for ’f’u can be written as
T, =d\T,+ B, Lk + BS L,

where B} = K'lBik. The “energy—momentum” term in
Eq. (21) is then expressed as
K*3(BS 1+ By )

R

Constant « can be interpreted as the gravitational
interaction constant. It enters the theory as a funda-
mental constant in the commutation relations defining
the group, just like speed of light enters within the
Lorentz group. Coniracting our group in the Wigner’s
sense? by k— 0 (like contraction of the Lorentz group to
the Galileo group by 1/¢ — 0) leads to uncoupling the
translations from the extra gauge transformations Lg
[see Eq. (22)], and, physically, uncoupling of the matter
fields and the geometry.
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The correlation between the appearance of the
energy—momentum term and the fundamental constant
« is not limited to the above example only. Anytime the
group is enlarged in such a way that commutators of
translations and some other generators lie at least in
part in G1{4,IR), the energy—momentum term appears,
and, at the same time, a constant « is needed to make
the whole gauge group dimensionless.
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In place of the usual commutation relation [d,4 '] =1 we consider the generalized commutation relation
characteristic of the para-Bose oscillators, viz., [d, H]= ¢ where H is the Hamiltonian (1/2)(dd '+ 4 '4).
The number states and the representation of various operators in the basis formed by these states are
obtained. We then introduce the para-Bose coherent states defined as the eigenstates of 4 for this
generalized case. We consider some of the properties of these coherent states and also show that the
uncertainty product {(A§)*> {(Ap)*> in this case could be made arbitrarily small.

1. INTRODUCTION

The classical Hamiltonian of a harmonic oscillator
of mass m and angular frequency w is given by

H =(1/2m)p'2 + tmw’q'?, 1.1)
with the corresponding equations of motion
¢ =p'/m and p =-mwiq. (a.2)

The passage to quantum theory is made in two steps
as follows!:

(1)We replace in H' the c-number variables ¢’ and p’ of
the classical theory by the operators g’ and p’ respec-
tively. It is being assumed that the operators g' and p’
are Hermitian and that they operate on a Hilbert space
with positive definite metric.

(2) We postulate the commutation relation
lq',p']=1iH.

For the sake of simplicity, we shall be using in place
of the quantities ¢, p’, and #’ the dimensionless
quantities

1.3)

g=(mw/H) 3¢, (1.4a)
p=(mawh)yt/2p’, (1.4b)
H=iw)y'H . (1.4c)

We also introduce the quantities ¢ and o * defined as
a=(g+ip)/V2, a*=(g-ip)/V2. (1.5)

The operators corresponding to H, g, p, @, a* in
quantum theory will be denoted as H, g, p, a, o,
respectively. The operator a' is the Hermitian adjoint
of @. Equations (1.1)—(1.3) then simplify to

H=3(g*+p?) =a*a, (1.6)

q=p, b=-4, (1.7a)
or equivalently

d=-ia (1.70)
and

lg,5]=1, (1.8a)

la,at]=1. (1.8Db)
2089 J. Math, Phys. 19(10), October 1978
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It may be argued that both of the steps mentioned
above for passage to quantum theory are not completely
unique. Firstly, since g and p do not commute with
each other, care must be taken in replacing ¢ and p by
the corresponding operators § and p, respectively. In
fact, depending on different rules of association,2-* one
may obtain different expressions for H. Hence for
definiteness, we assume Weyl’s rule? in obtaining the
quantum expression for the Hamiltonian, i.e., we
write

H=3( +1) (1.9)

=z(@ta+aat) (1.10)
Secondly, the commutation relation

la,a"=1 (1.11)

is not a consequence of the equations of motion. In
fact, if one is only interested in recovering the equa-
tions of motion (1.7) for the operators in quantum
theory, one must postulate the more general com-
mutation relation

[a,H]=ad. (1.12)

It is readily seen that (1.12) follows from (1.11) but
the reverse is in general not true.

The case when the particle operators satisfy the
more general commutation relation (1.12) has been
referred to as the “para-Bose” case.®>” Jordan,
Mukunda, and Pepper’ have obtained the “Fock” rep-
resentation for the para-Bose operators, i.e., they
obtained the eigenvalues, and eigenfunctions of the op-
erator A and the representation of the other operators
in the basis formed by these eigenstates (see also Ref.
8).

In the present paper we are interested in obtaining
the “coherent state” representation of these operators,
and discuss some of the properties of these states. In
analogy with the usual states,?'!° we define the para-

Bose coherent states as the eigenstates of a,
alay=alay, (1.13)

where @ satisfies (1.12) with H given by Eq. (1.10).
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In Sec. 2, we give a new derivation for the Fock
representation for para-Bose operators. In Sec. 3 we
obtain the para-Bose coherent states and discuss some
of their properties such as completeness and diagonal
coherent state representation in Sec. 4. In Sec. 5 we
obtain the uncertainties in the position and momentum
variables for the coherent states and observe that in
special cases the product of the uncertainties {(4%)?)
%{(8p)% could be made as small as one likes,

2. PARA-BOSE NUMBER STATES

We start with the basic commutation relation (1.12),

[4,H]=a, (2.1)
where
H=1(a% + aa"). @.2)

From the fact that @' is the Hermitian adjoint of 7 and
using the commutation relation (2.1) we readily find
that

[a*,H]=- &, (2.3)

[@,a'l=24, (2.3a)

[a®, a]=-24" (2.3Db)

From induction it then follows that

@, at] =2na@t, (2.4a)

[@?r 3] = = 2naten-t, (2.4b)
whereas

(@t at) ={2n +[a,a'] (2.5a)

[avmt d)=— a2 +[d,a']. (2.5b)
The commutator [@, &'] commutes with @, 4%, and H

but not necessarily with 4 or at,

Starting in a strictly analogous manner as in the case
of an ordinary harmonic oscillator we find that the en-
ergy eigenvalues differ by integers:

hoyhg ¥ 1, 00 hgt+m, » o0,

where /i, is the lowest eigenvalue of H. In the present
case we take /i, to be completely arbitrary except for
the fact that it has to be nonnegative, since H itself

is a nonnegative definite operator. We thus label the
representation by a parameter #,, the ground state
eigenvalue of H. The ordinary harmonic oscillator case
is obtained when we take i, =3.

We now introduce the number operator
AKT:I-AI—le:;ﬂ*((YT(?Jr aat) = hy, 2.6)

and the number states lu),, defined by

4§’|’7>h0:”!”>h0, n=0,1,2, 2.7
Obviously [n),,o is algo the eigenstate of # with the
eigenvalue » +h,. Because of the relations

IN,d]= -a, (2.8a)

N, at=ar, (2.8b)

which follow from (2.1) and (2.6), we may interpret
@ and @' as annihilation and creation operators, respec—

tively. In order to obtain the representation for ¢ and
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4', we write
alnng =20 = 1), 2.9)
ar [mng= by |n + ny, (2.10)

where A and p_ are some constants to be determined.
From the Hermltlclty requirement hy (n-1la ln)h
plnla’in—1)% it follows that

A= Xy, (2.11)
Further on taking the norms of Egs. (2.9), (2.10) and
adding we obtain

In 12+ B, |2=20+ 1) (2.12)

Equations (2.11) and (2.12) then determine A and u,
apart from the phase factors. For definiteness, we
take these constants to be real. We then find that (cf.
Refs. 5,8),

Mg, = (2m)H 12, (2.13a)

Nomey =420 + o)} /2, (2.13b)

Mo =200, (2.14)
n=0,1,2,

The Para-Bose number states thus satisfy the follow-
ing properties:

I;'[n)ho :;zln>h0, (2.15)

al2ny, = @02 21 = 1)y, (2.16a)

al2n + 1), ={200 + b/ 20, (2.16b)

ar | 2mpmy ={200 + B2 [ 20 + 1), (2.17a)

atl2n + 1, ={20 + 2112 20 + 2y, (2.17b)

la, " |{2m),, =2ho |20, , (2.18a)

[@,a']|2n + Dy = 2(1 = ko) | 21+ L. (2.18b)
Further, we have the completeness relation

§In>hoh0<n|:1 (2.19a)
and the orthogonality relation

CI LD (2.19b)

Relations (2.17) and (2.18) also give
[y = {2n1‘ [n/2 o } i O
/2] + )0 (e + 1)/2]+ A)
hy #0, (2.20)

where [K] stands for the largest integer smaller than
or equal to K.

It has been mentioned earlier that the constant /i is
an arbitrary nonnegative number. When h, = 5, we re-
cover the familiar case of the ordinary oscillator in
which case [cf. Egs. (2.18)] the commutator [, | be-
comes unity. Relation (2.20) is not valid for the case
when 2,=0. In this case

@' 0y, =0, (2.21)

(and also @|1),=0). We therefore find that |0), is an
isolated state with no possible interaction with any of
the other states. For all practical purposes {1}0 is then
the ground state. In fact this situation is identical to the
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case when i, =1, so that we may associate the state
]n)o with the state |n —1),. Hence without any loss of
generality the case k,=0 may be ignored.

3. PARA-BOSE COHERENT STATES

The para-Bose coherent states are defined as the
eigenstates of the annihilation operator a,

a,(y>h0:()'1(l’>ho. (3.1)

The matrix representation of @ in the para-Bose number
states has been obtained in the previous section. We
now expand | @), in terms of these number states
[a)n, = Q Clmy, (3.2)
and use {2.16).
relations

From (3.1) we then find the recurrence

C,, = (a2/2]nlhy+n ~1)}*/2C, ,, (3.3)

Cop = {201+ i)} 72C,, {(3.4)
From these relations, we readily obtain

_J_Tl) |2\

Czﬂ_{n!r(nmo)} (Jz_ Co 3.5)

and
N r (hO) 1/2 _a.— 2n+l
Cz"+1_.{n!1"(h0+;z+1)} (\/7) Co- 3.6)

Equations (3.5) and (3.6) may equivalently be written
in the form

> = T (ko) vz
Cn“{2"l—‘([ﬂ/2]+1)r‘([(n+1)//2]+h0)} aC,, 3.7

where [K] as before stands for the largest integer
smaller than or equal to K. We now require the co-
herent state [a),,o to be normalized,

h0<a'u>h0:1. (3.8)

Equation (3.8) then determines C, except for a phase

factor
= T (o) 1, L\
116 r([n/2 +1)r([(n+1)/2]+h0)<2 ["‘ > } )
3.9)
Let us define
Y T{ho) 1\
0= % e or e (2) 619
or equivalently
F&)=r) %x)“"ﬂ{lho_l(x)+I,,0(x)}, (3.11)

where /, is the modified Bessel function of the kth
order. ™

From Egs. (3.2), (3.7), (3.9), and (3.11) we obtain
the following expression for the para-bose coherent
state

), =l [9)}172
< T (ho) vz
XX r([n/ 2]+ D (e +1)/2]+ 1) © |71
(3.12)
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Using Eq. (2.20) we may also write

|y, =[flad) A Al [3}/2]]0),, - (3.13)

The familiar case of the ordinary oscillator, is re-
covered when we set i, =%. In this case we find from
Eq. (3.10) that

flx)=exp(x). (3.14)

Equations (3.13) and (3.14) then give
|a), = exp[- (1/2)]o,;z]<:§0 \/—-_-:l In,20  (3.152)
=exp[- (1/2)] @|*] explaan |0), ,,, (3.15b)

which are the well-known expressions for the ordinary
coherent states.®''°

The Hermitian adjoint of Eq. (3.1) reads

ho(af&*_—:a*,,o(a}, {3.18)

However, one may readily show that there are no right
eigenstates of @ , i.e., there is no state | X) which
satisfies a relation of the type

@' Ay, =AW, -

We close this section by giving the average values of
the various operators in the para-Bose coherent states:

ho<aId'a>h0=ho<a‘ﬁ*’a>h0:a; (3.17)
1
sl ldlan,= 7 (a+a), (3.18)
<a’ -~ ’ > —9 h01h0-1(10‘2)+(1—ho)lho(lﬂ‘z)
, h -

I (alg+4 (al) ’
0 (3.19)

(h0+lai2)1h0- (101 + (L =hy+ 1 &l 2yl ai?),

ro (Ol 0y, = (a9, (lal?)
(3.20)
(@] N]ey=lal®+ (1 -20) Ingla]
ho 0 1;,0-1(1012)+Ih0(|‘3‘|2)'
(3.21)
These relations are readily derived from Eqs. (3.1),

(1.5), (2.6), (2.18), and (3.12).
4. COMPLETENESS AND THE DIAGONAL
COHERENT STATE REPRESENTATION

In this section we show that the para-Bose coherent
states introduced in the last section form a complete
set, in fact an over-complete set. Analogous to ordinary
coherent states, we find the possibility of the diagonall®
para-Bose coherent state representation.

Since a is not Hermitian, the coherent states are not
expected to be orthogonal. From Eq. (3.12) we obtain
the following expression for the scalar product of two
coherent states:

no (Bl =rB* e} f] e [2)7(] |2} /2. 4.1

We show below that these coherent states form an over-
complete set. For this purpose we assume the ex-
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istence of some function u(a) such that

I el pe)da =1, 4.2)
where o =dxdy, x and y being the real and imaginary
parts of o and the integration is performed over the
whole complex @ plane. We substitute for Ioz),, from
Eq. (3.12) and find that

5 T'(h) /e
bl PO (CYRIRS VN ((CES VI RS

T (o) /2
2"'1"([m/2] + T (G +1)/2]+ k)

Xﬁf(,a'2)}-la*man#(a)dzal;z)hoh()(m! =1, 4.3)

From the orthogonality of the number states [Eq.
(2.19b)], we may write
{f( l o ‘2)}'1(1 *’"Ol"u(a)d"’a

_ 270 (/2] + DT (62 +1)/2] + ho)
I\( h ) nm'

(4.4)

If we now use polar coordinates

a=vrexp(it), d?c=rdrdb, 4.5)

we may readily show that y cannot depend on 6, and is
thus a function of | & |2 only. We then write

ue) = u(lal?) (4.6)

Substituting ¥* =x, and integrating over ¢, we then find
that

f LA} (o)

_2rp([p/2] - DT (e +1)/
7T (h,)

2]+ ko) .

4.7)

Thus our problem of showing the completeness of the
para~Bose coherent states reduces to determining
u(x) whose moments are given by (4.7). If we define a
function

E iy T(n/2]+ T +1)/2]+n)

y)—"-o n! 7T (k) , (4.8)
we may write
[A ) explixy) dy=M(). 4.9)

The series on the right-hand side of (4.8) is an ab-
solutely convergent series for |yl <| (and is divergent
for 1yl >1). For iyl >1, we define M(y) by analytic
countinuation. Assuming that M(y) thus defined is well
behaved such that we may take the inverse Fourier
transform of (4.9), we obtain

; .
wl) = o= f(x)/ M(y) exp(—ixy) dy. (4.10)

We thus obtain the resolution of the identity operator

.f|a>h0,,o<a[p(|aaz)d2a:1, (4.11)

where u(x) is given by (4.10), thereby showing that the
para-Bose coherent states are complete. Using Egs.
(4.1) and (4.11) we may write
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1, = [LerBuiel)
r ) Tl B)A1 BT

Equation (4.12) show that these coherent states in fact
form an over complete set. On multiplying (4.12) by
(7| on the left, we obtain the “self-reproducing”
property'? of f(x):

2 flr*a)fla*p)
ﬁ‘q“’ A 1)

The possibility of the existence of the diagonal co-
herent state representation of an arbitrary operator
may also be considered. If we write

sz ¢(a)|0‘>hoho<a I “(I a lz)dza
we obtain using (3.12),

fwa*nqs(a)u(xm
Aol

]a)ho d?a (4.12)

d%a =fl*p). (4.13)

(4.14)

d?a

:h0<m lé ‘mno{r(ho)}-l
27T ([n/2]+ 1) T([(n +1)/2] + hy)

x2mT([m/2]+ 1) T([0m +1)/2]+ R} /2.
4.15)

Equation (4.15) gives all the moments of ¢{(a)u(l a1?)/
Flal?).

We close this section by observing that the properties
of the usual coherent states are reproduced if we set
hy=7%. In this case we find from (4.8) that

1
M) =1 1L

4.16
7 1l=iy’ (4.16)

and if we substitute this expression in (4.10) we ob-
tain p{x)=1/7. This gives

%ﬂa)l/z 1/2(a|d2a:1°

5. UNCERTAINTY RELATIONS

It is well known that for two Hermitian operators A
and B which satisfy the commutation relation

(4.17)

[A,B]=iC, (5.1)
the uncertainty relation
((AAP ((ABY) = 1 [(O)]? (5.2)

holds. Relation (5.2) is an equality if the state under
consideration is an eigenstate of A + z)\B where Ais
some real constant. If we identify A and B with the
position and momentum variables ¢ and p of the para-
Bose operator, we find that

(@ (ap) = 1 [a,pD %, (5.3)

We may readily verify that relation (5.3) is an equality
for the para-Bose coherent states (being eigenstates of
the operator (§+ip). From Eq. (1.5) we may write

§=Q/NV2 ) a+ay, (5.4)
P=—(i/VE)G=a"). (5.5)

The commutator of ¢,/ is therefore given by
lq,p1=i[a,a"]. (5.6)
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We also have

F=H+5(@+a?), 5.7)

P =H-3(@+am), (5.8)
so that

(86D =By - (@ (an+ (0w +(aanyy @Y
and

(ap)? =y - (@ (@ - H{((ad)» +{(ad)®}.  (5.10)

For the coherent state | @), , {(4%)® =0 and we then
find from Eqgs. (3.20) that

N 2y _ Podng(l @1®) + (1 = koMol ]?)
(ag)) =((ap)) = hIho_l(l al®)+1, (lal?)

(5.11)

Comparing (5.11) with {3.19} and using (5. 8) we obtain
(A (ap =% [(7,5D > (5.12)

We thus find that for para-Bose coherent states, the
uncertainty relation (5.3) reduces to an equality. How-
ever, since [g,p] is in general not a ¢ number the
right-hand side of {5.12} itself depends on the given
state. Hence the para-Bose coherent states are not the
minimum uncertainty states in the absolute sense (ex-
cept for the case of ordinary oscillator, i,=3 when
[g,p] becomes a ¢ number). It is obvious that one may
find states for which the uncertainty product {(8g)?
x{{ap)? is in fact less than §, which is the minimum
value for the ordinary oscillator. For small values of
lal, we know that!!
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L{la|)~Gla|/Tk+1), (k#-1,-2,...)
and hence from (5.11) we obtain

(agP =((&pP) ~ by
and

(agP) ((ap)) ~ K.

Thus for para-Bose operators with &, <3, we find that
the ground state (or the coherent state with a =0)
gives the uncertainty produect which is less than L.
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Maxwell’s equations relative to a pseudospherical coordinate system in Minkowski space are cast in a
form remarkably similar to the usual Cartesian form. The vector spherical harmonics of the unit
hyperboloid derived in an earlier work are then applied to the problem of quantizing the electromagnetic
field from the standpoint of the method of quantization on spacelike hyperboloids. A Coulomb-like gauge
is introduced for which quantization on spacelike hyperboloids parallels that of ordinary Coulomb gauge
quantization. In a kind of “turning around” of the situation which obtains for ordinary Coulomb
gauge quantization, our new Coulomb-like gauge condition has manifest covariance with respect to
transformations of the homogeneous Lorentz group but not with respect to translations.

I. INTRODUCTION

The method of quantization on spacelike hyperboloids
is a form of relativistic quantum theory in which the
concept “all space at one time” is replaced by the con-
cept of a “spacelike hyperboloid, ” (x%? = r.r =const >0.
Dynamical variables specified on one spacelike hyperbo-
loid can be extrapolated to a neighboring hyperboloid by
means of a scale change generated by a “dilation Hamil-
tonian”; just as in the usual formalism, dynamical vari-
ables specified at one time can be extrapolated forward
in time by use of the ordinary Hamiltonian. The
Tomonaga—Schwinger equation indicates that the two
methods should be equivalent, but it is interesting and
potentially fruitful to express quantum field theory in the
new form.

Although a number of model systems have been treat-
ed earlier using the method of quantization on spacelike
hyperboloids, there seems to be no previous application
of this method to the full electromagnetic field in four
dimensional Minkowski space. Fubini, Hanson, and
Jackiw' considered a massless scalar particle in a four-
dimensional Euclidean spacetime from the standpoint of
the new formalism. Their evolution equations enable
them to extrapolate field quantities between neighboring
spheres (x°)® + r. r = const in the Euclidean spacetime.
The advantage of looking at Euclidean spacetime is that
then there is no difficulty in treating all spacetime,
whereas in a Lorentzian spacetime the initial quantiza-
tion provides the fields only within the forward light
cone. The means of extrapolating outside the forward
light cone in a Lorentzian spacetime has been consider-
ed by Sommerfield’ and di Sessa®. Sommerfield gives an
extensive investigation of the relationship between the
new formalism and the usual Hamiltonian formalism for
the specific example of a massive scalar field in one
space and one time dimension, and also provides an in-
troduction to the treatment of the same example in four
spacetime dimensions. Di Sessa has investigated the
propagator in the new formalism and finds it to be the
same as the usual one at least in the massive case and
provided that the particle—antiparticle distinction is the
usual one. This result of di Sessa indicates that the
typical lack of manifest translational invariance in ap-
plications of the method of quantization on spacelike
hyperboloids should correct itself at the level of the
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Feynman—Dyson expansion—at least if there are no
mass-zero particle present. The Dirac equation in four-
dimensional Minkowski space has been treated by the
method of quantization on spacelike hyperboloids by
Gromes, Rothe, and Stech.* Also, quantization on
spacelike hyperboloids has been investigated by Fulling®
in connection with problems of quantization in general
relativity. Relevant special functions associated with
the unit hyperboloid in Minkowski space have been in-
vestigated in Refs. 6— 11. Reference 11 contains speci-
al tensor methods for physics on spacelike hyperboloids
as well as results on vector spherical harmonics of the
unit hyperboloid in Minkowski space, both of which will
be used extensively in the following. In the inlevest of
brevity the present paper will be treated as a divect
continuation of that earliev paper and will contain no
special review of those earlier rvesults. The prefix C,
as in Eq. (C2.1), will signal a reference to a particular
equation from this earlier companion paper.

The present work starts with an investigation of Max-
well’s equations in a pseudospherical coordinate system
for which

x'=s coshp,

x! =5 sinhp sind cose,
x* =5 sinhp sinf sing,
x*=s sinhp cosb,

0<s<wo, (=sp<o,

0<f@<m 0<@s<27,

Our attention is hereby restricted to the forward light
cone. Equations (2.7)— (2. 10) obtained in Sec. II pro-
vide a convenient representation of Maxwell's equations
on spacelike hyperboloids which is very similar to the
ordinary Cartesian form. This similarity is achieved by
the use of the special tensor methods of Ref. 11. The
latter methods exploit the properties of the intrinsic
gradient operator

.0 1 ~ D $ 2
VEp—+— — 4+ —_

Pap " sintp (9 36 sinf aq))
of the unit hyperboloid. A new Coulomb-like gauge for

which the vector potential is a solenoidal tangent vector
field is introduced [see Egs. (2.11) through (2.13)].

1.2)
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Quantization in this new gauge is carried out in Sec. III
and goes quite parallel to ordinary Coulomb gauge quan-
tization'?: Generalized coordinates can be found such
that the quantum conditions take the ordinary canonical
form [q,;p,] =i6,5. The generalized coordinates g3,
referred to here are defined through Eqs. (3.7), (3.8)
in terms of the expansion coefficients @7, in an eigen-
function expansion of the field involving the solenoidal
vector spherical harmonics of the unit hyperboloid de-
veloped in Ref. 11,

Due to the Lorentz invariance of the intrinsic gradi-
ent operator (1.2) of the unit hyperboloid the new
Coulomb-like gauge is invariant under transformations
of the homogeneous Lorentz group and our quantization
procedure possesses a manifest covariance with respect
to that group. However, in a kind of “turning around” of
the situation that obtains for ordinary Coulomb gauge
quantization the new gauge is not manifestly covariant
with respect to translations.

Section IV concerns the photon propagator. Since we
are dealing with a theory having zero rest mass, the
lack of manifest translational covariance can carry over
to the propagator. Indeed it does not seem possible to
achieve manifest translational covariance of the photon
propagator in the present formalism without the use of
some type of limiting procedure. One such limiting pro-
cedure discussed in Sec. IV would introduce a small
photon rest mass to be set equal to zero at the end of a
calculation.

. MAXWELL'S EQUATIONS ON SPACELIKE
HYPERBOLOIDS

We start with Maxwell’s equations in the covariant
dyadic form
OeF=j (2.1a)
and
O«*F=0 (2.1b)

The tensor F is the electromagnetic field tensor having
the contravariant components

é‘l 0 -~ B3 B2
62 , B3 0 iy
- B 0

2.2)

The dual tensor *F is defined through the equations
*Fev= (1/2)e#ve8F o with €©'23=1, The 4-current density
j has the contravariant components

2.3)

It obeys the differential current conservation law
D-i=0 2.4)

Since the field tensor is antisymmetric, it has a repre-
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sentation of the form
F=-35A& +B,

in which £ =e,£* is a vector lying in the tangent space
of the hyperboloid x*x, =s? through the field point; and B
is a general antisymmetric tensor in the tangent space:

B=e,e,(- g)/%>p,, (2.6)

2.5)

The vector & can be called the electric field vector in
the hyperboloidal space; and B=e’B, =e B°, the mag-
netic induction vector. When the pseudospherical repre-
sentations (C2.1) and (2.5), (2. 6) of the d’ Alembertian
operator and field tensor respectively are substituted
into Maxwell’s equations (2.1a)}, (2.1b); the system of
equations

-v:£=sp, 2.7

VXB=sJ+ <saa—s+2>5, (2.8)

—V’B:O, (2.9)
and

YXE=- (sé% +2) B (2.10)

for the tangent vector fields £ and B results. The simi-
larity of these equations with the usual form of
Maxwell’s equations—in spite of our unusual coordinate
system —is quite striking! We shall refer to Eq. (2.7)
as the “electric Gauss’s law on spacelike hyperboloids”
and similarly for the other equations. The minus sign
in the electric Gauss’s law is a bit unpleasant. It is a
consequence of our negative definite metric on the unit
hyperboloid, according to which it is the operator

(= V) which has the meaning usually associated with
the divergence.

Vector and scalar potentials can be introduced ac-

cording to the equations

B=VXA/s? (2.11)
and

E=-s2VV =571 (3A/3s).

2

(2.12)

The factor s™ in Eq. (2.11) has been chosen for later
convenience; it is our A/s which has the dimensions of
the usual vector potential. Similarly the explicit power
of 1/s associated with the VV term of Eq. (2.12) has
been chosen such that it is our V/s which has the di-
mensions of the usual scalar potential. The represen-
tations (2.11) and (2. 12) are designed to satisfy the
homogeneous Maxwell’s equations (2.9), (2. 10) identi-
cally. It remains to investigate the consequences of the
inhomogeneous Maxwell’s equations (2,7) and (2. 8) when
the fields are written in terms of potentials. At this
point it is convenient to make a gauge choice. In the
following we shall be concerned with a gauge for which
our vector potential on the hyperboloid is solenoidal:

VeA=0. (2.13)

This gauge choice is analogous to the Coulomb gauge of
ordinary electrodynamics. The gauge choice (2.13)
might be referred to as the “covariant” Coulomb gauge,
since Eq. (2.13) has a manifestly covariant form as
regards transformations of {only) the homogeneous

Levere Hostier 2095



Lorentz group. Substituting Eq. (2. 12) into Gauss’s law
(2.7) and using the gauge condition V-A=0 leads to a
Poisson-type equation for V:

vy =s%p. (2.14)

The Green’s function for this equation has been obtained
in Ref. 11 [Eq. (C3.27)]. The vector potential in the
relativistic Coulomb gauge is a special example of a
solenoidal tangent vector field for which the simplified
curl—curl identity (C2.19) holds. Substituting the repre-
sentation B =(VXxA)/s? into the Ampere circuital law

(2. 8) and using the simplified curl—curl identity and

Eq. (2.12); we obtain the differential equation

| 22 12 v2_1
{W+;K 2 }A:SJT, (2.15)
in which

JT=J - s7%d/as)VV (2.186)

can be shown to be the solenoidal part of the current
density vector:

v.JT=0. (2.17)

We note that the closure property of V2 proved in Ref.
11 at the end of Sec. II guarantees that all terms of the
wave equation (2,15), including the V?A term, shall
refer to the same vector space; viz., the tangent space
of the hyperboloid x*x, = s? through the field point.

I1l. QUANTIZATION OF THE ELECTROMAGNETIC
FIELD ON SPACELIKE HYPERBOLOIDS

The usual Lagrangian density of the electromagnetic
field interacting with an external current is [ = - JF*'F,
-(1/s)J-A~(1/s)pV. The suspicious minus sign in the
vector potential interaction is due to our indefinite
metric: (=1/s)J-A=(1/s)J A +J A +JA). When ex-
pressed in terms of our field vectors £ and B in the
tangent space of the hyperboloid s=const, / becomes
[ =3B B~¢-&)-({1/s)J*A~(1/s)pV. Writing £ and
B in terms of potentials, we get

s = -1A-A+1(VxXA)-(VXA)-s%T-A

3.1

~ (3)s%pV. 6.1
Here and subsedquently a dot over a quantity signifies
differentation with respect to the new time evolution

parameter

v =In(Ms), (3.2)

in which M is a parameter with the dimensions of mass.

We shall quantize in a generalized angular momentum
representation, expanding the solenoidal tangent vector
field A as a linear superposition of the solenoidal vector
spherical harmonics Y° , :

A=Y [*

slmo do Ypal,,,quzm' (3'3)

The dynamical degrees of freedom of the system are
here contained in the generalized Fourier expansion
coefficients @°,,,. The Q°,,  do not each represent in-
dependent degrees of freedom of the system however;
since they obey constraint equations

melfm=(_1)"Qpah-m. (3,4)
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These constraint equations express the reality A =A" of
the field being expanded. The symmetry property

Ypa*l‘m:(_l)mYpal.-m (3'5)
of the vector spherical harmonics is involved in the
derivation of Eq. (3.4). The constraint equations (3.4)
show that the field coordinates @°,, for m#0 are not
generalized coordinates suitable for doing the Hamilton-
ian dynamics of the field. Such generalized coordinates
should be real and independent in order to fit into the
usual Hamiltonian formalism. However, the fact that
our constraint equations are holonomic!® indicates that
a set of independent real coordinates of the field—refer-
red to subsequently as canonical coordinales —must
exist. The key to the construction of a set of canonical
coordinates lies in the observation that the constraint
equations (3.4) impose opposite parities under inter-
change of m and —m on the real and imaginary parts of
Q°,,., m#0. This suggests introducing a single real
function ¢*,,, without special symmetry properties—
hence not subject to constraint equations—from which
the real and imaginary parts of °,, are constructed.
These ¢*,,,, will be the canonical coordinates of the field.
Explicitly, we have

@y = P a1+ )+ (= D71 = i) m#0. (3.6)

alr=m?

The relations (3.86) could be regarded as a consequence
of an explicit defining equation

o= A =D, A+ A +DQ N, E, m#0. (3.7)
For m =0 the defining equation is
@ a10= (2)Q%10- (3.8)

The m =0 case requires special consideration; although
the details of this will not be indicated explicitly. In
terms of canonical coordinates we find a total
Lagrangian L= [s%d%/ of

L=%/s (3.9)
where
Q :AE 12da g3, -2a%da ¢,

+dag,, s (1 =% + 1+l (3.10)

- [ d= $sPov.

We here adopt the shorthand notation ¢*,,,=¢,,, in
which A signifies the set of quanfum numbers consisting
of p, @, and . For convenience the integral over « has
been replaced in Eq. (3.10) by an approximating dis-
crete sum which is then incorporated in the sum on A,
The 4§}, are the generalized Fourier expansion coeffi-
cients of the solenoidal part, given by Eq. (2,16), of the
current density vector:

"=t ) Y i

We are now in a position to do the Hamiltonian dyna-
mics of the electromagnetic field in a straightforward
way. The canonical momenta p,, and Hamiltonian H are
identified through the variation of the action'

final
6J=6[dsL= [ZpAméqu - Hés] |
Am

(3.11)

initial
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due to variations in the coordinate values and proper
time at the end points. Thus

PAm:ag/aZIAm (3.12)
and
H=9/s, (3.13)
in which
‘Z—:’"aa fm a2 (3.14)

is the “dilation Hamiltonian.” The canonical momenta
are found to be

pAm:4da a,., (3.15)
Since our coordinates ¢, are independent; canonical
quantum conditions can be imposed, the nonzero com-
mutators being

[qu"'z; pAl’"l]:i 6A2A16?"2m1' (3.16)
The canonical ¢ am? P having served their purpose of
providing the basic commutator structure of the theory,
we now return to our original description in terms of the
not independent variables @,,. Commutation relations
associated with the @, can be derived by expressing the
original variables in terms of the canonical variables,
and then using the canonical commutation relations

(3. 16). These calculations involve the use of Eqs. (3.86),
(3.8), and (3.15) in addition to (3.16). The nonzero com-
mutators between pairs of variables @ ,,, QA,,,, QAm and
Q" Am thereby obtained are

.ot —_fot -0
[QAsz’ QAlmI]_ [QAzmz’ QAlml] (3.17)
=i 5,,2915((12 _C‘l)ﬁlzllémzm1
and
[QAm;éAm ]:[QTAM;Q.RM]
2M2 1™ 2M2 1™ (3.18)

=i 6pzpldaz - al)alzll(-— l)mlamz,-mf

To free ourselves of the need of any further reference
to the rather awkward canonical variables, we require
the dilation Hamiltonian in terms of the original vari-
ables. This is =9, +H,:, Where

$0= 2 Jo 40 5@ @ pn + 2°Q' Q00 (3.19)
and

Sint= = 2 Jo 40 @,s%E+ [dEds7pV. (3.20)
The dilation equations of motion

0=(1/0)[0;9] (3.21)

can be derived from the Heisenbergh equations of motion
(d/ds)0 = (1/i)[0;H] by making the change of variables
(3. 2) and noting the relation (3. 13) between the
Hamiltonian H and the dilation Hamiltonian § . By use of
the commutation relations (3.17) and (3.18) it can be
checked that the dilation equations of motion (3.21) lead
to the correct proper-time evolution in our theory: the
dilation equations of motion for @, , are obeyed trivially,
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and the equations of motion for G'?Am express the original
wave equation (2. 15) for A in the generalized angular
momentum representation.

For applications it is convenient to make a further
transformation to a representation in terms of creation
and annihilation operators a,,, a},. These are defined
in such a way as to lead to a factorization of the inte-
grand of Eq. (3.19) for 9

Apm = (@/21%Q, +i(1/20) %0, (3.22)
The commutation relations for pairs of operators from
the set a,,,, a}m are the usual ones, the only nonzero
commutators being

[aAzmz; at\lml]_ 3 916(a2_al)612 1 mym 1 (3.23)

Other important quantities expressed in this represen-
tation are

A:p%f:da @a)y VY, ay,+ YE, a0t (3.24)
A= g'/n f:da @ay'4Y, ioa,, - Yiiadl,}, (3.25)
5o=;§lf:da adl,, apm, (3. 26)
and
Pint =~ g’i f:doz @a)y o', s%% + ap, STt
+Jazzstov (3.27)

One -proper-time commutation relations for the full
fields,
[A(z)u; _A(l)u]:i{guu 5,,8

= S2uSy,

Vo (V220 1(7,,)16(21), (3.28)

in which

(V)ff'=-v_35 (3.29)

can be derived by the use of representations (3.24) and
(3.25) of the full fields and by the use of algebra (3.23)
of the creation and annihilation operators.'® The one-
proper-time commutator (3.28) is seen to have a gen-
eral structure analogous to the corresponding object in
ordinary Coulomb gauge quantization'® except that Eq.
(3.28) is formed entirely from objects invariant under
the homogeneous Lorentz group. Having arrived at the
commutator (3.28), we are now in a position to make a
complete return to coordinate space. To this end the
further relations

= [ds:{-4A-A-L(VxA)- (VXA (3.30)
in which the colons signify normal ordering, and
i = [d={s3T - A+55%V} (3.31)

should be noted.

IV. FREE PHOTON PROPAGATION FUNCTION

The proper-time evolution of the annihilation and cre-
ation operators a,,, @}, is quite simple in the free field
case. When the appropriate commutators are evaluated
the dilation equation of motion (Eq. (3.21) with § =$,)
for a,,, is found to be
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$ a,,+iaa,,=0. (4.1)
The solution of Eq. (4.1) can be written
a,(W)=eip, . 4.2)

in which b,,, = a,,(0) is a proper -time -independent set
of harmonic oscillator annihilation operators obeying the
algebra (3.23). When it is substituted in Eq. (3,24), we
obtain the following representation of the free field

s g "y »
A=), ‘fo do Qa)yV 4 Y, %,

plm

+Y%,0t b, 4.3)

which exhibits the proper-time dependence explicitly.

In the present formalism the appropriate defining
equation of the photon propagation function

D,,(21)=(0]S(A(2),A(1),)| 0)
= 6(v, -1, X0|A(2),A(1),]0)
+6(v, - v,) (0| A(1),A(2), ] 0)

makes use of an ordering with respect to proper time
(S-ordering), in place of ordinary time ordering.'” Our
first photon propagator will be obtained by simply using
this defining equation in conjunction with the field ex-
pansion (4. 3). The result of substituting Eq. (4.3) in
Eq. (4.4) and using the algebra (3.23) of creation and
annihilation operators is the eigenfunction expansion
D,,21)= 7, [“da 2a)*¥,, ), 1,0, e el (4.5)

plm

(4.4)

This eigenfunction expansion provides the boundary con-
dition that in the remote future (v,— + =) the function
{4.5) contains only “positive-a” waves, exp(-iav,)
while near the light cone (v,—~ - =) it contains only
“negative-o’ waves, exp(iav,). Armed with this bound-
ary condition, we can calculate the function (4.5) as the
solution of an appropriate differential equation,

The differential equation in question can be obtained
by investigating the effect of the operator{{3®/av,?)
+V,2 —1)] on both sides of Eq. (4.4). This equation
[(@%/3v,") + V.7 - 1)]D,,(21)

= (guu =SS + ViV VL, Ni0(p, - v))0(21)  (4.6)

assumes only the free field equation of motion {cf. Eq.
(2.15)]
((3%2/81%)+ VE-1)A=0 4.7

and the one-proper-time commutation relations (3.28).
Comparing Eq. (4.6) with the similar equation

((9%/0v3) + Vi - 1D, (21)

“ 4.8

= (@ur = SuSa T Vau (V) (Vi (v, —v,)5(21) (4.8)
leads to the symmetry property

D, (21)=D,,(12). (4.9)

From Eqs. (4.6) and (4. 8) we infer the representations

D,,(21) = (g, = 5,8, F Vi (V,°)(v,,))D(21) (4.10)
and
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D, 21)= (g, — 300 + Vo (9,57 1(7,,)0D(21) (4.11)
of U, in terms of a “scalar photon propagator,” D(21),
obeying the differential equation

[(22/av,2) + V.2 —1[D(21) = i5(v, - v,)5(21). (4.12)
We now seek a solution of equation (4. 12) obeying the
boundary conditions of the function (4.5): that there shall
be only “positive-¢” waves present as v,—~ += and only
“negative-o’ waves present as v,—~ — =, To this end, we

write down an eigenfunction expansion of D(21) in a
series of the scalar spherical harmonics of the unit hy-
perboloid discussed in Ref, 11:

DR =2 ‘j:da Yo, )%, (1)C (v, vy).

im

(4.13)

Substituting in Eq. (4.12) leads to the following equation
for tne Fourier amplitude C,{(v,, v,)

[(8%/2v3) + @®]C, (v, 1)) = i0 (v, = v,), (4. 14)

whose solution obeying the above boundary conditions is

Colvs, ”'1):(-1/2&)(’-wwz-vll- (4.15)
With this result Eq. (4.13) can be written
D(21)= _;Z, f:doz(Zoz)'lYa,m(2)Y§,m(1)e' jelvval - (4.16)

a result for the scalar photon propagator which parallels
Eg. (4.5) for the full tensor propagator. The discrete
sum in Eq. (4.16) can be performed by means of the
following special case:

sin{ap,,)
sinhp,, ’

5

=0

NG

o
Yalm(z)Y);lm(l) = 2—77.2~
! (4.17)

coshp,, =5, * 5,

of the general addition theorem for Gegenbauer func-
tions of Durand, Fishbane, and Simmons. '® The quantity
0z in Eq. (4.17) can be viewed as the p coordinate of
one of the two timelike vectors §,,,, measured in a
Lorentz frame of reference for which the other vector
is aligned along the time axis. Using the addition theo-
rem (4.17) Eq, (4.16) goes over into

D(21)= — [~%2 SI@pz) st (4.18)
[4]

47® “sinhp,,

This integral is elementary. Introducing a convergence
factor exp(-ewx), € >0, we find (new ¢)

1 py 1 <
D(ZI):;}?Sinhpm (Vz_Vl)z_Pg1"iE > €70 4.19)
This is the scalar photon propagator which is to be used
in conjunction with Eq. (4. 10) or (4.11) to give the ten-
sor propagation function (4.5). Remarkably, the denom-
inator of Eq. (4.19) has the property of vanishing only
on the light cone (x, —x,)*=0 through the point of emis-
sion or absorption of the photon.'® The propagator (4.19)
is invariant under transformations of the homogeneous
Lorentz group but not under translations. This lack of
translational invariance indicates that the propagator
(4. 19) would provide a rather awkward description of
the known physics of the electromagnetic field.

1t is clear from the work of di Sessa® that the propa-
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gator (4. 19) is not an inevitable result, We could go
over to a new description of the field in terms of crea-
tion and annihilation operators c,,, related to the &,, by
means of a Bogoliubov transformation, thereby changing
the vacuum state to be used in Eq. (4.4) and effectively
selecting a different solution of the propagator equation
(4.12). To obtain a physically useful propagator, we
should choose a ¢ representation whose vacuum can be
identified with the usual physical photon vacuum, A
criterion for selecting such a “good” representation
which works for massive particles is given by di Sessa,
who then finds that the criterion leads to the usual form
of the propagator. One outcome of this result is that the
lack of manifest translational invariance typical of
theories of quantization on spacelike hyperboloids cor-
rects itself in the propagator and hence also in the
Feynman—Dyson expansions, at least for particles hav-
ing a nonzero rest mass. Since we are here dealing with
a zero mass theory, di Sessa’s criterion is not applic-
able. Perhaps it could be replaced in the massless case
by the criterion that the above mentioned restoration of
manifest translational invariance shall occur in the
propagator. At the present time however there is no
known ¢ representation for which translational invari-
ance is actually restored to the propagator. However,
translational invariance could be incorporated in the
present formalism by allowing the photon to have a
small rest mass, which would be allowed to approach
zero at the end of a calculation. By di Sessa’s result
above the net effect of this would evidently be simply
the replacement of our D(21) by the usual solution of Eq.
(4.12):

DR21)—s,s,/47% [(x, — x,} * (X, — Xx,) = ée]. {4.20)
In such an approach the expansion
$,S,
47°[(x, - x,) * (x, ~ X,) = de]
:wa—-———. 22 ¥ (2)F Y (IHer it evt ety
mfo diasin(riq)” @im= aim @.21)

+ (,-wiia-ialvz-ull}
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of the usual propagator in a series of Lorentz harmonics
may prove useful,
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To show this, note that the vanishing of the denominator im-
plies pyy=1Iv,— v 1. Taking the hyperbolic cosine of this
equation gives

coshp,;=§,+ §;=cosh|vy—v,|
=4 exply, — v +Lexpl- (1, = v.)].

This is equivalent to the relation 28, - §,= (s, /s.) + (s  /s,).
Multiplying through by s, s, and transposing gives

0=(s,)% = 25, 5.8, 8.+ (s )2= (5,8, ~5.5)%,

Since x=s8, the result (x, —x,)2=0 follows.
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An inverse scattering transform for potentials of compact
support®

Jodo C. Portinari

Departamento de Matemdtica, Pontificia Universidade Catélica do Rio de Janeiro, Rio de Janeiro, Brasil
(Received 10 April 1978)

We consider the inverse scattering problem for the one-dimensional Schrodinger equation on the whole
line,

(d %/dx H(x,k)+[k >— V(x)ld(x,k) =0.
In some applications, as for example in the synthesis of electromagnetic media, it is important to have
sufficient conditions on the scattering data such that the corresponding potential has compact support in
some prescribed interval. The scattering data traditionally used in connection with the above ISP have
been either one of the reflection coefficients (we are assuming that the potential V does not support bound
states) r and F—from the left and right, respectively. Although it is easy to obtain simple conditions on r
(7) to ensure cutoff of the potential on the left (right), conditions on r (7) that guarantee cutoff on the
right (left) are too complicated to be of any practical value. In this paper, we propose to use new
scattering data, namely the ratio r/¢ (where r is either one of the reflection coefficients and ¢ is the
transmission coefficient), and give necessary and sufficient conditions for the corresponding potential to
have support contained in [—a, a].

1. INTRODUCTION p(k) =2ik r(R)/t(k) (2)
The inverse scattering problem (ISP) for the is more convenient, as scattering data, than the usual
Schrodinger equation on the entire real line, reflection coefficient (), and that it provides a simple

&£ answer to our problem.
= 2 _ — e (=00 o0
g PR T =VWIpl, =0, xel==,%), (1) 5 1y CHOICE OF CONVENIENT SCATTERING

ke R, DATA

We begin by establishing some terminology for our
discussion. Let # and 7 be the left and right reflection
coefficients, respectively. Consider:

h(k) = »(k) exp(~ 2ika),

has received renewed attention, since the discovery of
its application to nonlinear evolution equations.!'?

The ISP consists of deriving all possible information
about the potential V from knowledge of quantities— -
called scattering data—related to the asymptotic form k) =7(k) exp(2ika),
of certain solutions of (1). We refer to Faddeev’s sur-

. d defi
vey® for a detailed exposition of the ISP main results and detme
(for a bibliography on inverse problems, complete aHi(lR):{f:]R* C ] f is the boundary value of some
up to 1974, the interested reader might consult Refs. 4 T
c Hi(R
and 5). f.c 2(R)},
her

We shall assume throughout our exposition that the where
potential V does not support bound states. HX(IR) ={f:Imz20 ~Q l f is analytic in Imz =0

In this paper, we shall be interested in finding and sup [” [f(x+iv) [zdx<°o}
necessary and sufficient conditions on some suitable LEL )

scattering data for the corresponding potential V to have

are the usual Hardy—Lebesgue spaces.
compact support.

Then we can assemble known results® to state the

Relations between the analyticity of the scattering following. (See Note added in proof at end of paper.)

data and the range of V have been discussed in the ISP

literature, both for the radial and for the whole line Lemma: Let

equation. However, to the best of our knowledge, up V={ve LZ(IR)[ [w (1+ lle) [V(x)[ dx <% and
to the present time no simple necessary and sufficient T

conditions on primordial scattering data have been - +V has an empty point spectrum in LZ(RR)}.
obtained that ensure cutoff of V at bofh sides. dx®
We propose to show that, for the purpose stated Then Ve |/ has compact support contained in [- a, a if
above, the function and only if
he dHA(IR) (3)

a) and

This research was supported in part by the F.I.N.E. P., ~

Financiadora de Estudos e Projetos, Brasil. he dHA(R). 3"
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Apparently, this lemma would settle the question
we raised in the Introduction—we now have necessary
and sufficient conditions on some scattering data,
ensuring that V< |/ has compact support.

However, these conditions involve bofh v and 7, and
we know that each of these, separately, determines V
uniquely. One could argue that, since each reflection
coefficient determines the other one, the condition on
# could be transposed as a condition on ». The problem
is that the explicit relationship between » and 7 is
quite involved and we would be left with two conditions
rather asymmetrical, one being very simple—condi-
tion (3)—the other very complicated.

At this point, we suggest discarding » and # altogether
and looking for some more convenient scattering data.

From the unitarity of the S-matrix, we have

k) H=k)
tR) T H-k)"

This relationship provides the hint needed to guide our
choice. If we set:

(for all real k) (4)

plk) =25k v(k)/t(k), (left transition coefficient)

p(R) =2ik #(k)/t(k), (right transition coefficient)

we see that (4) implies,

and it is evident that, for V,(x)=V{(~x), the left transi-
tion coefficient is p, (k) =p(k), where § is the right
transition coefficient for V.

Hence, if we find a condition on p() that implies
V(x)=0 for x < —a, then this same condition on p(~ )
ensures V(x)=0 for x > a.

Therefore, the trahsition coefficient seems to be a
convenient set of scattering data (we note that this
was conjectured” in 1966) as far as ensuring simul-
taneous cutoff on both sides through symmetrical con-
ditions—on p(x k), a “single set” of scattering data—
provided we can find such conditions.

Now define the application
L ——L*R), [(V)=p.

It is a consequence of known results® (see Note added
in proof) that / is well defined and injective. In the next
section we show that / is indeed a suitable inverse
scattering transform for our purpose of controlling the
support of the potential.

3. FINITE RANGE POTENTIALS IN [/

Theorem: V <)/ has support in [~ a, ¢] if and only if,
[ (V)=pec E,, where,

E,={pe L*(R)|p is the restriction to the real line
of an entire function of exponential type < 2a}.

Outline of Proof: The “if” part of the theorem is an
immediate consequence of the results in Ref. 6.

Let us assume that pe E,N / ({/). Notice that if we
can show that / (V)=pe E, implies V(x)=0 for x< - q,
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then it follows from the symmetry considerations made
in Sec. 2 that V(x)=0 for x > a also holds [indeed, p is
in E, if and only if, k t—> p(- %) is in E_].

Therefore, from the lemma in Sec. 2, it suffices to
show that pc E, implies ke 0H2(IR).

We begin by observing that if g< E_ then from a
classical Paley—Wiener theorem, it follows that the
function

(k) = g(k) exp(~2ika)

belongs to 3H2(IR). Now let us consider the two cases
(i) and (ii).

(i) t(0) #0: If we set p(k) =2ikg(k), then gc E,, and
h(k) = g(k) t(k) exp(~ 2ika).

Furthermore, from the observation above, gc E,
implies

k —= glk) exp(- 2ika) ¢ HZ(IR).

Since t is the boundary value of a function ¢_,
analytic in Imk >0, continuous for Imk > 0, and bounded
in Imk = 0, it follows that hc 9H3(IR).

(ii) #(0)=0: In this case, let (k) =2ik q(k). Then
h(k) = p(k) g(k) exp(- 2ika).

Mutatis mutandis the same argument used in case (i),
substituting ¢ for #, completes the proof of the theorem.

4. FINAL REMARKS

This result has some applications: (i) in the numeri-
cal treatment of the ISP, where it is of interest to
have an estimate of the support of V.

(ii) in the synthesis of nonhomogeneous electro-
magnetic media. It has been shown®'? that this ISP
constitutes an adequate model for many of these prob-
lems, such as the synthesis of nonuniform transmis-
sion lines, dielectric filters, etc. In such questions,
realizability conditions are important—among these,
conditions that ensure the device to be constructed to
have finite length, which in the ISP model, means that
V must have compact support.

As far as applications to the KdeV equation are
concerned, our result, as it stands, seems to offer
little interest. Indeed it is well known that if the
solution to the KdeV initial-value problem is in |/ at
some instant #, and has compact support, then at any
t>1t, it no longer has compact support (this result is
also an immediate consequence of the theorem of
Sec. 3).

However, we are in the process of obtaining, using
similar methods, conditions on p that ensure V to have
a prescribed decay when | x| - =, We note that, when
considering the solution to the KdeV initial-value
problem through ISP methods, one is not really re-
stricted to working with the usual inverse scattering
transform V (k). Indeed, any scattering data
will do, as long as it determines V uniquely and its
evolution in time is known. Qur choice V = p(k)
responds to both of these conditions and, in addition,
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appears to be convenient for the description of the
solution’s behavior as |x{—~, in terms of decay
properties of the initial data.

Nole added in proof: After the completion of this work
we read a preprint of P. Deift and E. Trubowitz entitled
“Inverse Scattering on the Line” which presents a
thorough and deep analysis of the subject. In particular
the authors point out some errors in Faddeev’s,® and
show that the characterization problem for the class of
potentials

Li={v] [T @+ ¥ |V@)|dr <o}

is still open—this has also been noted!’ by K. Chadan
and P.C. Sabatier. In the Deift—Trubowitz paper, the
characterization problem for the class

L;:{VU_::(I +x2) | V(x) |dx < o}

is completely solved. For this reason, we have used in
our work the class L;, instead of L.
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An extension of su(2,2;2n) is presented which is based upon a theory of Z, gradings of Clifford algebras.
In the example given su(2,2;4) is extended and the Clifford algebra of an internal six-dimensional space is
manifested. It is suggested that super Clifford algebras of this type can give valuable insight into the

study of su(2,2;2n) supersymmetry theories.

. INTRODUCTION

A type of graded algebra with indices graded over
Z,and Z is introduced. The example given contains as
subalgebras the Clifford algebra! of the real ortho-
gonal space R>* and the graded Lie algebra® u(2, 2;4).
Taken together these subalgebras generate a super
Clifford algebra which contains the Clifford algebra of
an internal space R%° (six-dimensional extensions of
space—time have been considered in other contexts®).

In Secs. I through V the mathematics of the super
Clifford algebra /) is developed and in Table I a repre-
sentation is presented over the 16-dimensional Dirac
algebra, The representation is bijective so the dimen-
sion of /) is (4}(4)(16)=256.

In Sec. VI a copy of the Poincare algebra is identi-
fied with the aid of the imbeddings of 4-vectors in /).
This is then used to construct objects which behave
formally like twistors? but bear hidden internal indices.
In Sec. VIII a Lagrangian is presented and its invari-
ances shown,

As in Ref, 5 no use is made of a commuting imagin-
ary scalar i except to demonstrate connections with
more familiar treatments of spinors. All algebras pre-
sented are real and generators for U(1) phase transfor-
mations are drawn from /) itself,

Il. THE CLIFFORD ALGEBRAS

The Clifford algebra of the Minkowski space R*+?
[signature (- ++ +)] is the familiar algebra of Dirac
operators. The sixteen basis elements of the algebra
are here denoted 1, y,, 0,, =3{y,y,~ YY)y Yu¥s Vs
=v,Y5YsYo and are obtained by taking antisymmetric
products of % of the y, for #=0, 1, 2, 3, 4. (Greek in-
dices will run from 0 to 3 throughout.) The generators
of this algebra satisfy 3(y,v, +v,v,.) ==7.,
=— (diag(- + + +)),,. Henceforth, unless a statement
to the contrary is supplied, reference to any nXn repre-
sentation will be understood to be over the Dirac
algebra.

The Clifford algebra of the real orthogonal space R>*
has generators I',, =0, 1, 2, 3, 4, 5 which are chosen
to satisfy 3(I',I"; + I',I",) = - (diag(- + + + - +)),;. The
following 2Xx 2 representation of this algebra will be
used here:

Yo O 0 -y, 0 v

r,= s Iy= sy Iy= . 1)
0 v, vy O ys O
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Again a complete basis for this Clifford algebra can be
generated by taking antisymmetric products of % of the
T, for k=0,...,6. The fifteen matrices T';;= 3([,T;
-I,I';) and 8% =T ,TI,I,I,I',I', constitute a basis of the
Lie algebra su(2, 2)xu(1),

The final Clifford algebra we need to consider is that
of the real orthogonal space R%°, It has generators
A, n=0,1,2,3, 4, 5 which satisfy 3(A;A; +AA))
= (diag(— - —— ~ - ));;» The 2x2 representation of
this algebra used here is determined by

Yo 0 0 Y
Ao= , A= (i=1,2,3),
0 vy -y; O
(2)
0 C c 0
A= , A= s
C 0 0 -C

where C=yg;. The fifteen matrices A;;=3(A;A;

- AjA;) together with At*=A A A A A A, constitute a
representation of the Lie algebra su(4)xu(1)~so(6)
xu(1) which was the internal part of the second super-
symmetry of Ref. 5.

I1l. Z, GRADINGS OF CLIFFORD ALGEBRAS

Let ( be a Clifford algebra for the real orthogonal
space R*7 (signature p(-)g(+)) and let g;, £=1,2,,..,p
+ g=n be the generators of ( satisfying

lgig; + g2 = - (diag(p(=)g()), . 3)

Let (, be the () dimensional subspace of  with a
basis consisting of the antisymmetric products of % of
the g,. For s=0,1, 2, 3 define A, = BC ;,aBC 50 . -
and let x be in A, and y inA ;. Define a product on

by x® v =3{xy + (<)¥yx), It is not difficult to show that
x® v is an element of/]m where m =({ +;) mod 4 so that
( becomes a Z, graded algebra with this product which
we shall call the Z® algebra on R*< [or (ZB) 1],

Define 8,=A,,8,=A,,8,=A0, Bs=4, and let x be
in/; and y in B ;. Define another product on( by x *y
=3(xy — (=)"yx). x *y is an element of 4, where m
=(¢{+j)mod 4 so that this product also defines a Z,
graded structure on( which we shall call the Z}* alge-
bra on R#9 [or (Z})» with graded subspaces ((Z¥)* %,
for s=0, 1, 2, 3].
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IV. SUPER CLIFFORD ALGEBRA

[ is a real algebra partitioned into subspaces /) ;; the
indices of which are graded over Z, and Z (although
Dy, is trivial for |j| >2). A 4x4 representation of/) is
presented in table I in which the graded product (also
denoted *) is determined by

x ¥y =gy = (=) Imuy)

for x in 0” and vy in/), . [so that x * y is an element of
D for p=1(i + k)mod 4 and g=j + m]. Another product
on /) is determined by

Y@y =4(xy + (=) *Imyx),

x®y is an element of /), for a=(i+%+2)mod4 and b
=j+m so that it respects a different grading on the
Z, index.® Let /), and/)  be the unions of the sub-
spaces /), for fixed k and m, respectively. (/), is the
supersymmetry of Ref, 5 characterized by an internal
subalgebra su(4)Xu(l) [see Table I)],

TABLF I. The basic of /) is presented. The subspaces/)*, /)i,

Two important subalgebras of /) are /)** (external) and
D' (internal). /)°* is essentially the Z} algebra on R*>*%,
In Table I one sees how the 2X2 representation of (Z})>*
determined by (1) is mapped onto /)**. The adjoining of
the odd components /), ,, from Ref. 5 to /)** determines
the rest of /). In particular the internal subalgebra
['® of /) appears. It is isomorphic to the Z} algebra
on R*°, The isomorphism between the 2 x2 representa-
tion of (Z¥)%° determined by (2) and the 4x4 representa-
tion of )'* is given in Table I [note that the respective
images of ((Z})*9%,, s=1, 3 are the subspaces /), j
=3, 1 of )]. Finally note that /)** and /)i* cannot inter-
act through the algebra product without an intermediate
in/p .

V. CONJUGATION

Let  be the Clifford algebra of the general space
R*4ag in Sec. II. Conjugation on( is an anti-involu-
tion determined by the conditions g; = - g; for the genera-
tors of ', and (uv)” =v"u" for arbitrary elements » and v
of . This implies that if u is in ((Z*)? %), then 4" =—u

and /) L1 are separately displayed.

/)%, In the table below the 2x2 matrices listed correspond to 4 x4 matrices in /) in the following way:

x 0 0 u
X u|l_ {0000
l;y] 000 0]

v 00y

vs 0|1 0

w410 vsj10 1
n=3/0 0
o O

3

=
it

oo

oo [l ) OOIOO
LoF, °F
T

Y5¥u O Yu O
0 Yovull 0 -
Action of conjugation on /)=:
£ Sy -u
[_v y| =T o«

)" The correspondence between the following 2 x2 matrices and 4 x4 matrices in Hiris:

00
X u|_ (0 x
vy 0o v
00
i . . .
anrln (subscripts ¢ and j range from 1 to 3)
m=90
n=0 ¥s 0 v 0 0;; 0 o, 0]
0 v 0 - 0 o 0 - 04
n=1 v 0 Vi 0 vsY: O v 0
7 0 - 0 7Y 0 -
n=2 10 1 0] gy 0 o 0]
01 0 - 0 oy 0 — oy
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o
(=4
o2
ox, O

R

e W ey

=

x o O

o= SO o

lmll_.__.ll_____!
M T |
X o

r=sl
=0



S O I I P R

[ol} 0 Y5V 0 Yo Yo 0
0C —Y5v; O Yo © 0 —7

Action of conjugation on /)8(x"= v vy):

Xou|t_ x~ v”
vy ut oy

/) +1- The indices p and o are independent so that the matrices below each signify eight basis elements.

/)m*i
n=0 [0 7% 7 O 0 e e O
00 0 Cvy, 00 0 —Cy5Yp
00 0 Cy, 00 0 - CY¥5Ya
LO 0 0 © { 0 0 0 0
n=1 [0 7. 7aC © 0 =%7,C =757.€ 0
00 0 & 0 0 0 VsV
00 0 ga 0 0 0 Yi¥e
00 0 Lo o 0 0
n=2 0 v, v O 0 vv. Yave O
00 0 ~Cvy, 00 0 CysY,
00 0 —=Cvy, 00 0 CY5Yq
loo 0o o oo o o0
n=3 0 ~¥,C—7%C 0 70 ¥5Y.C v5vaC 0
0o 0 0 Yu 00 0 Y5Yu
0 0 0 Yo 00 0 Yola
0 0 0 0 100 0 0
/) -1- Themap| 0 x 3 0 0 0 0 0lof/, .~/ et
000u] |x 0 00
000vw y- 0 (U]
0000 0 —u =v= 0
is a linear isomorphism.,
Action of conjugation on /) 4
- 0 x y 01° 0 Wy, vy, 0
0000 0 0 0 0 000wl |00 0 -y
x 0 00 _ 'y0u~ 0 0 0 0002l "o o 0 -y
y 000 Yo 0 0 0 0000 00 0 0
0 uov 0 0 —-X"Yg =¥ vg O
for s=0,1and w~=u for s=2, 3. If x=x'g, then Eq. (3) 3Ys X
implies (x, y)=x * vy~ where (x, y) is the R»? inner pro- X,(x)= in /8.
duct of x and y. 0 3y,

Conjugation thus defined on/) ** and /) * can be extended
to all of /) (uniquely up to sign). Its action on/) is pre-
sented in Table 1.

VI. 4-VECTORS

In this section 4-vectors will be imbedded in /),
These imbeddings can be used to assign explicit
conformal transformations to elements of /) ¢*. We shall
concentrate on the Poincare group here. Since /)!* and
[, play no part in this the 2 x2 representation of /)**
in Table I and Sec. II will be used and the imbedding
into /J will be understood.

Let x* be a space—time 4-vector and x=x*"y, . Define

X YsX
X, (x) in )g,
s X
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The Poincare group is then generated by the matrices
r,,=T,®T, (Lorentz transformations) and T,
=3(Ts, — ['y,) translations). For example, if y=v*y,,
then

exp (‘\""Tu‘)){l ({) exp(_ f\'VTV)

1 v x yex 1 —y v
— :)(I(X‘f‘\')u
0 1 flys « 0 1

Similarly X,(x)+ X,(x +y). X, has the advantage that it
commutes with Ae* which is the generator of phase
transformations in /) (that is, A°* takes the place of
the imaginary unit ).

Momentum 4-vectors obviously cannot be imbedded in
the same way. Let p* be the momentum 4-vector of a
particle and p=p*y . Let J=J*%g,,, where J*” is the
antisymmetric angular momentum tensor of the parti-
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cle defined so that if the particle is spinless with
4-position x =x"y, then J =3 (xp - px).

Define
ysp  2J
Pp,di= in g%,
0y
0 YsP
Pyp)= in /g,
0o 0

These matrices are consistent with the actions of T
and T, defined above. For example,

vy

exp(y*T, )P, (p, J)exp(-y*T,) =P, (p, J +z(vp - py)).

Note that P, commutes and P, anticommutes with the
phase generator A%,

It should be obvious that the choice of T, to repre-
sent translations was to some extent arbitrary. We
can obtain a representation of translations and 4-vector
imbeddings dual to that given above by applying a con-
jugate transpose anti-involution on elements of /).
For example,

vsp 0 UNY
Pip, J)= and  Pi(p)= .
~2J ygp ysp 0
The dual translation generator is T¢ = — §(I';, +T,,).

VII. SPINORS AND TWISTORS

A spinor in /) is an element of /) ,,. Henceforth =
will refer to an object linear in y, and y,v, and w will
be linear in 1, »,, and o,,. Represent the y-matrices
by the following 4 X4 complex matrices:

L 0 0 io, 0

'}/0:: . Yk: N ‘)/5:
0 -1 io, 0 -1 0

where the Pauli matrices are

1 0 0 -4
0, = v Oy s
0 -1 i 0
01
O, = .
10

(Note—the algebra is still real despite the complex
representation. ) The matrices 7 and w take the forms

w, -wy -w; of

w, Wy —w, —wf

w= .
w; —wy W, - w§
w, WY w, wf

These are Weyl spinors with internal indices.

The Hermitian transposes of these matrices satisfy
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":

7' =_ 7" and w'=w" so that the adjoint spinors are
T=a'y,=~ T Y= —7,n" and GZwTT’o:"‘-’A Ya=YoW >
Therefore,

0 w 7 0 |0 0 0 O

0 0 0 -7 0 0 -»

00 00 (w00 7

0 7 w O 0 0 0 O

(see Table I).

We can construct in/) objects that behave at least
formally like twistors. Define

0 w 0 0
ysm 0 0 y&
S (n, w)= 0o o0 0 o | Do
0O 7 0 O
0 = 0 O
0 0 O
Sy(m) = Vs in/,,
0 0 O 0
0 0 0 0

and let p=p*y, and J=J"c,, be as in the last section
with the added condition that p®* =0 {massless particle).
The translation generator T, generates the following
actions on the matrices S,:

Sy {m, @)= Sy {7, w+ysy) and  Sy(m) Sy(n), 4)

where v=1vy*"y, defines the translation.

Suppose 7% =p and 77 =0 [these conditions are met
by m=exply,0)p(2p,)t7?], and ~ 3(wT - 1@)y;=J. Then
S, (1, ) *S,(m) == 3P, (p, J) and S,(7) % S,(7) == P,(p). (5)

The transformations (4) and the relations (5) are for-
mally similar to transformations and relations on the
components of twistors as they are commonly
presented. *

VIIl. A LAGRANGIAN

The operator D= E,{@#){# =09"y,) and its dual will be
used in the construction of a simple Lagrangian for a
massless spinor field. The field y(x) in plane-wave
form with momentum spinor 7 is imbedded in/) as
follows:

¥ = exp(A=p*x,, )5, (1) exp(- a%px,)
=S, (exp(yspx, )= S, [ (x)).

The Lagrangian will be self-dual (/¢=/) and strictly
contained in /) t*, Its invariances include the Poincare
group and internal SU(2)xXU(1). Define

[ =(=1/4)a[¥(D) — (¥ D) + ¥4(D¥?) - (¥4D)¥!]
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0o 0 0
0L 0O
1o 0 0 of

0 0 0 0

where L =(-1/4)y;[3@¢) - @D = vo @@ ~ G, ]

If x=exp(6tic;,) (sums from 1 to 3) and v=exp(v,¢)
then

1 0 0 0
WeUV— 0 we 0 O
0 0 1 0
0 0 01

is an SU(2)x U(1) transformation which acts nontrivially
on ¥li.e., WS,(¢)W" =S,(pr*u™")]. The action of W on
¥4(D¥?) is (W)™ LWHWDW-H (W) w?W?). Since external
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and internal elements commute and V cancels this ac-
tion reduces to U(¥4(D¥?%))U"!, The action of Won [ is
therefore U/ U™ or L —uLu™. L is of the form 4 + 4"
+v,Ay, + A" which implies L is a real-valued function
multiplying the identity. Therefore, uLu™ = L. Poincaré
invariance is similarly shown. The equation of motion
of the field y is y;#y=0.

I1,R. Porteous, Topological Geometry (Van Nostrand—Rein-
hold, London, 1969).

’L. Corwin, Y. Ne'’eman, and S. Sternberg, Rev. Mod. Phys.
47, 573 (1975); V. G. Kac, Commun. Math., Phys, 53, 31
(1977).

3F. Gliozzi and J. Scherk, CERN Preprint TH 2253 (1976).
‘R, Penrose, J. Math, Phys. 8, 345 (1967); R. Penrose and
M. A,H. MacCallum, Phys. Rep. 6, 24 (1972),

5G. Dixon, J. Math. Phys. (to be published).

A pure commutator product is possible on /) if odd (even)
Grassmann parameters are introduced into elements with
odd(even) Z index. The Z, grading as a result becomes a
Zyx Z, grading.
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The linear representations of SL(3,R) on a Banach space

E. Angelopoulos

Laboratoire de Physique Mathématique, Faculté des Sciences—Mirande, Université de Dijon, 21000

Dijon, France
(Recetved 6 October 1977)

All continuous irreducible linear representations of SL(3,R) on a Banach space are studied and classified,
using successively infinitesimal methods and methods of induced representations. Irreducibility and
equivalence criteria are given in terms of the values of the invariants of the representation as well as in
terms of the inducing characters. The reduction into irreducible factors D/ of the restriction to SU(2) is
carried out and the multiplicity of each D/ is determined. A necessary and sufficient condition for an
irreducible representation to be equivalent to a unitary representation is also established.

1. INTRODUCTION

We are interested in studying the irreducible repre-
sentations (IR’s) of the universal (twofold) covering
group SL(3,R) of the unimodular linear group SL(3,R)
(or, equivalently, the projective representations of the
latter) in a Banach space. This problem has quite often
been treated from different viewpoints, !~® but it has not
been completely solved., The general theory of repre-
sentations of noncompact Lie groups, developed by
Gel’fand, Graev, Naimark, and their collaborators
(see, for example, Ref. 6) has solved the problem of
determining the principal series of representations of
semisimple groups by constructive methods, using
functional spaces over coset spaces of the group; un-
fortunately, there is no method known so far which
yields systematically all representations of such groups.
One of the most powerful results in the domain is due
to Harish-Chandra’ who has proved that all unitary IR’s
of a noncompact semisimple Lie group appear as
factors of induced representations on functional spaces
over the maximal compact subgroup. However this is not
a very amenable tool because it is not immediate,
technically speaking, to determine all possible unitary
kernels of a given compact group. Indeed, in the case
of SL(3,R), in the most exhaustive study of its UIR’s
due to éijaéki,  the author is led to make a restrictive
conjecture about the form of the SU(2) kernels; so that
in spite of the abundance of his results there is no proof
of their exhaustiveness.

Our method of investigation is based on the study of
the Harish-Chandra module of the Lie algebra which
decomposes to a direct sum of so(3) modules and to the
study of the centralizer of so(3) as well as of ladder
operators from one so(3) module to another. This
procedure is justified by the fact that an irreducible
module must be monogeneous; so that if the IR of
G =S1.(3,R) operates on the Banach space A, and if f
is a C“ vector of /3, then //f is dense in 8 {// denoting
the universal enveloping algebra of our group), Using
this remark we see that one needs only to consider the
Lie algebra action on a dense subspace of 3, which we
shall denote by £,,,, and which is isomorphic to a
quotient module of // by some left ideal ¢ (in fact the
ideal which annihilates f). The action of {/ on 3, de-
fines the representation within the so-called infinitesi-
mal equivalence; once it is known, one can define B
as a completion of A3, by introducing topology.
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This procedure leads to a lack of information if
stopped here; indeed, even if the ideal ¢ is sufficiently
large (in particular if the center of // is represented
by scalars), there is no standard method to decide
whether ///¢ is an irreducible module; So one must
axiomatically identify 3, not to {//¢ but to {//9",
where ¢’ is the maximal proper ideal containing ¢. On
the other hand, it is not sure at all, and in fact not
true, that the representation obtained for general ¢
is integrable to the group, topology having been explicit-
ly excluded from the beginning.

The consideration of the maximal compact subgroup
provides us with a strong classification principle: Since
all Banach representations of a compact group are
known to be finite dimensional, and since, in our case,
the dimension defines the representation, the classifi-
cation criterion will be the dimension 27 +1 of the lowest
dimensional irreducible component. The number ! will
be called (improperly) the lowest weight of the vepre-
sentation (of G, or {/, with which we are dealing). The
lowest weight considerations combined with the fixed
values taken by the invariants, enable us to classify the
irreducible modules A, and to obtain equivalence and
irreducibility criteria (Theorem 1),

To obtain necessary conditions for unitarity (which
prove in fact to be sufficient) when working inside /3,
we first grant /5 ,,, with a pre-Hilbert structure, then
write down the inequalities due to the positiveness of
the scalar product for a lowest weight vector ¢ and its
immediate successors X¢ through the ladder operators
X, following the method used by Bargmann® for SL(2,R)
and Naimark® for SL(2, €). These criteria are estab-
lished in Theorem 2 (=2A + 2B +2C +2D),

It remains to show (1) that the representations de-
fined on A,,, are indeed integrable to group represen-
tations and (2) that the unitarity criteria are not only
necessary but also sufficient. Although general theo-
rems are available for (1) (Lepowsky has recently
proved that Harish-Chandra modules yield integrable
representations), and though a critical survey of UIR’s
already constructed by the various authors would suf-
fice, we chose to construct again from the beginning
the induced representations of G and seek irreducible
components with the help of Theorem 1. This method
has the advantage of giving the j-multiplicity for every
UIR /) of SU(2), a result which is quite complicated to
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obtain using infinitesimal methods only. The sufficient
condition for unitarity is established by considerations
on a two-step induction,

This paper is organized as follows: Sec. 2 contains
the study of the properties of an algebra of so(3) tensors
and introduces ladder operators through the techniques
of reduction of a tensor product of so(3) modules, with-
out any considerations on s1(3,IR). In Sec. 3 we study
the universal enveloping algebra // of sl(3,IR) as an
s0(3) module. In Sec. 4 the results of the two previous
sections are combined to yield lowest weight considera-
tions which are summarized in Theorem 1. The suf-
ficient conditions for unitarity, separated into four
cases according to lowest weights, are established in
Sec. 5 and Theorem 2A +2B +2C +2D. The study of in-
duced representations is carried out in Sec, 6 and all
related resulis are established there. In the concluding
Sec., T we compare our results with previous ones and
we give some explicit formulas in the Appendix,

2. BEHAVIOR OF SO(3) TENSORS

Let {/ be an associative algebra which contains {/,,
the universal enveloping algebra of so(3). The genera-
tors of so(3) can be identified with the three independent
components J,; =-J, (k,1=1,2, 3} of the skew sym-
metric two-rank tensor J, and we shall denote by w the
Casimir element of {/, putting w = 3J,,J;, (we adopt the
Einstein summation condition for latin letters only,
throughout this paper), We assume furthermore that the
elements of // are linear combinations of tensors, so
that the bracket representation of so(3) on // decomposes
into the direct sum of finite odd dimensional representa-
tions. The bracket representation (b.r.) on tensors T of
rank one is given by

[sz; Tj]= blek - 6ijz (2' 1)
and the b.r. on tensors of rank » is the tensor product
of n times the b. r. on tensors of rank one.

Let R be a representation of {/ on some space S, If
the decomposition of S into eigenspaces of wis known
and if one wants to know how (//{/, acts on these
eigenspaces, one has to diagonalize the operator Adw
defined by Adw(X) =[w, X]; this problem is of course
equivalent to the reduction of the tensor product of two
representations of so(3).

We shall restrict ourselves to tensors of rank two
{(noticing however that similar formulas can be derived
for tensors of any rank). From 2.1 one obtains

slew, Eyl=Ely=JuE; = Eyidy. (2.2)
Since we expect contracted tensors, traceless sym-
metric tensors, and skew symmetric tensors to behave
differently, and since rank two tensors form an algebra
under contraction, we introduce the following notations:

E will denote the tensor with components E,;, ‘E the
transposed one, with components (*E),; =E,,, EF will
denote the contracted product with components (EF),,
=Ey,F;;, and the Kronecker §,, symbol will be written

1 or, most often, omitted. Contracted indices shall also
be omitted and we shall write {E) instead of 3E,,. We
shall also put
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EXF =EF +*(EF) - ¢(EF), EAF=EF-*(EF).
(2.3)

I, in particular, we put E=1 (or F=1) in (2. 3), we
obtain the traceless symmetric and skew-symmetric
parts of the tensor F (or E). Finally we shall denote
the contracted bracket by

[E;F]=EF - {(‘'F'E) =~ ‘[*F; ‘E]. (2.4)

The following two formulas can be derived by con-
sidering the range {1,2, 3} of the indices. First let
A, B, C be traceless tensors of rank two; one has

AatBinCos+A1eBrsCai + ArsBaiCin
+AuBiCai +ArBaiCrs +AaiBraCix
=804 1iB1xCr1 + Ai1BriCi) + AasBuCir
+ABoygCri +A4,B1uCas (2.5)

Next let K, L be skew-symmetric tensors of rank
two; one has

KisL =81 Usn = 85aU1m = B1mUgn + 64aUsm
with
Uim :thLhm - 6jm %<KL> °

Let us now examine Adw. We first observe:

(2.6)

Fact 1: The set of elements of {/ which commute with
so(3) is a subalgebra X of {/. The center C of X contains
the algebraic span of / and /., where / is the center
of {/, and 7, is that of //,. The elements of X are exact-
ly the tensors of rank zero (i.e., the fully contracted
ones).

Fact 2: There is an 80(3) module isomorphism be-
tween tensors of rank one and skew-symmetric tensors
of rank two given by

(2.7)

Now, having introduced K’ in (2. 2), one easily estab-
lishes for skew-symmetric K:

1
Kij=¢€5kn Rp=z€ms K.

K'=JAK=-K=-KAJ+K, (2,83)
K’ =Kw + K’ - JKJI), (2. 8b)
K'Ad=-Kw+JKJI). (2. 8c)

Assume now that {/ acts on S by the representation
R, S being the direct sum of S; such that S; is the eigen-
space of w for the eigenvalue (7 +1). (Of course there
is no distinction algebraically possible between j and
—j=1.) Then 3Adw acting on K is represented by the
matrix

0 2+ 0
1 1 o0
0 -1 0

which has the eigenvalues j +1, 0, and —j. Except for
the two values w =0 and w =— %, the three eigenvalues
are distinct, so Adw is diagonalizable and K splits to
three components K*, K-, K'=w"'(KJ)J, such that
K®S;CS;,. The two components K*, K~ are j-dependent
and transform to one another by the transformation
j—~=j=1. We have the following formulas for

ww +3)#0:
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K=K +xw™'J+K" with x = KJI), (2. 9a)
K'=(j+1)K'-jK", (2.9b)
and conversely
{2+ DK =jK+K/ = (j+1)"'xJ
=(i+1DK-KAJ- (j+1)"xd, (2. 10a)
(+1D)K = +1)K-K —jxJ
=jK+KnJ—jad. (2.10b)

If Z is another skew-symmetric tensor with (ZJ)=v
we can form the quantities (Z*K™) and {(Z"K*) which com-
mute with w:

(ZKD=@i+ 1)+ DEEY = {(Z 1 K) )= (§ + 1) yx],
(2.11a)

(ZKHy=2j + D JZEK)+ (Z nK) )= jlvx],  (2.11D)

If we restrict ourselves to integrable representations
of so(3), the exceptional value w = —} will never occur
and the value w =0 will correspond to the trivial repre-
sentation, for which J=0, Choosing arbitrarily non-
negative values for j, we have, for j=0, K=K =K* and
K=K =x=0. We can include this case in formulas
(2.9)—(2.11) by adopting the convention that xw-t is
finite for j =0.

Finally, using (2.6) we find, for skew-symmetric
Kand Z:

(ZAK) =(ZJ)K - Z{KT), (2.12)
KD, KK)]= (KA K)V'K) + K(KAK)), (2,13)
(KXDAT=Kw—-1) +K’+ }Jx. (2.14)

We now repeat the same procedure with the traceless
symmetric tensor H; if K=HAJ=JAH, we obtain:

H' =JXH-3H=-HXJ+3H, (2.153)
H” =H(4w - 3) + 4H' - 3K %X J, (2. 15b)
H/XJ=-4Hw + HXJ +3KXJ, (2.15¢)

Since (KXJ)'=K’*J we see that, if H acts on S,
3Adw is represented by the matrix M, the eigenvalues
of which are - 2j+1, —34, 0, j+1, 2j+3,

0 (25+3)2-1) 0 0 0
1 4 0 0 0
M=]| 0 -3 0 j(i+1) O
0 0 1 1 0
0 0 0 -1 0

The eigenvalues of M are distinet for
(w + Yy — 3) o - 2)#0,

Except for these values H splits into five components:
H=H"+H'+H'+H +H, (2.16a)
H'=(2j+3)H" + (j+1)H* - jH - (2j - 1)H", (2.16b)

such that H* carries S; into S;,,. From (2.14) we obtain
(K*XNAT=K*(j*+j-2£(j +3)),

and (2.17)
(IXIIXT)) =3w? —w,

2110 J. Math. Phys., Vol. 19, No. 10, October 1978

so that
H'= (£ =) xJXJ with x = KJ), (2.18a)
(2 + 1) H" = (j +2)(KXJT +j7 'K XJ = (zw - 1) H),
(2. 18b)
2+ DH =~ DHEXT =~ G+ DK XT - (4w - 1)HY),
(2.18c)

(47 +2)H"=2(j +1)H-HXJ + (j +2)!
X (e 2KXT = (5 + 1)K X T + £5(27 - 1)HY),
(2.18d)
(4 +2) " =2/H+HXJ +(j - 1)
X (= 2ZKXJ +57 1K XJ + 5(5 +1)(27 +3)HY),
(2. 18e)

If G is another traceless symmetric tensor such
that GAJ=L we have:

GH")=(j* +2j))"(LK"), GH)=(#-1)YLK"), (2.19a)
(GH*) == (GH") + (47 +2)"![2(j + 1)(GH)

—{GAH) D) +w (LK) = (2 - 1){GH")],  (2.19b)
(GH) =~ (GH") + (4 +2)"'[2j(GH)

+{((GAH) J) - (LK) - (2§ +3)(GH"]. {2.19c)

Examining the exceptional values of w (or j) for inte-
grable representations of so(3) we drop o =— . For
w =0, j=0 the representation is trivial. From (2. 15a)
we get H' =3H, hence H=H"* and the formulas (2.16)—
(2.19) are valid under the convention that j~1/2J is finite
for j=0.

Tor w =13, j=1%, the representation is a multiple of
the two-dimensional one, for which JXJ=0, From (2.5)
and (2. 15a) one obtains

2H” =H(4w - 15) +11H’ + 3HX(J XJ), (2.20)

hence 3Adw has the eigenvalues 4 and %, corresponding
to H** and H*. We leave it to the reader to check that
the above formulas hold under the convention #°=0 and
that they yield H"=H =0,

Forw=2, j=1, H™ and H™ cannot be separately de-
fined, but their sum can be defined by ¢ =H - H** - H*
- HY as well as A= AJ, We then obtain [w, ¢]
==20+JIXA, [w,Al=~2A. If we admit only integrable
representations, JXA must vanish since AS;CSj on
which so(3) must be trivially represented, and H is
again the sum of eigenvectors of Adw. We leave it to
the reader to verify that in fact ¢ vanishes, by using
the fact that the contraction-free symmetric tensor of
rank three of //, (which is a polynomial of degree three
in the J's) vanishes on Sj.

3. THE ENVELOPING ALGEBRA OF SL(3,R)

We shall use now the results of the previous section,
assuming that // is the universal enveloping algebra
of s1(3,IR). The generators of the eight-dimensional
Lie algebra form a traceless tensor E, the commuta-
tion relations being
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(Eis, Epi) =04 Ei1 = 611Epy . (3.1)

We identify so(3) inside s1(3,IR) by putting J=E - ‘E,
We shall denote by © the involutive automorphism of
!/, the restriction of which on sl(3,R) is

OE=-'E,
and the restriction of © to (/. is the identity.

Let us now examine some invariant subspaces of [/
under the adjoint representation, We shall denote by F
the traceless rank two tensor F=EE +{(*EtF) — i(Ez),
and by T and T*Y the symmetric tensors of rank three
(with ten components each) defined by

foltza =€akl(Ekaal "FakEml),
T(mroza :ekla(FkaEla - Ekn:Fla)-

Notice that OF ='F and 6TV =T'",

(3.2)

(3. 3a)
(3. 3b)

Using (2.5) and (3.1) one easily proves:

Fact 3: A necessary and sufficient condition for an
s1(3, R) submodule of // to be isomorphic to the si(3, R)
module E is to be a linear combination of E and F with
coefficients in the center ./ of {/.

More precisely, we have
[(F +ME);, (F +23,E)y]
=€ Tyl el e + Spslla + X0 E
+ A +2) Flyp = 6ul@a +X2) E + (A +25) F)yy,

(3.4)

where a=1+ 3(E?) lies in/; and
2E’=F +a-1+3E, (3.5a)
2EF =2FE=qE +b +3F, (3. 5b)
2F?=(-a +2)F +2bE +a’ - a + 3aE. (3.5¢)

The elements a and b =4(EF) span . algebraically.
Notice that ©a=a, 8b=-1b.

The bracket of E and 77, 7 is

(Ent, Tola] = 610 T + 610 T4

+ 01 Thos— 5uiT oy (3.6a)
(Ewt, TE3 ] == 60xT i — Bax i1

= T o + 01, Ty « (3.6b)

Let us now introduce the symmetric and skew-sym-
metric components of E and F, as well as the contracted
components of T and T** which yield skew-symmetric

two rank tensors. Putting
H=E+’E, G=F+‘F, K=F-

we obtain from (3.5):

H2+ =G +2(a~1)+3J, (3. 7a)

HJ +JH=K + 3H, (3. o)

HG +JK=GH + KJ =aH +2b + 3K, (3. 7c)

JG +HK=GJ +KH =aJd + 3G, (3.7d)

GG +KK=(2-a)G +bH +2a{a~1) + 3aJ, (3.7e)

GK+KG=(2-a)K+bJ + 3aH. (3.7f)
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Putting
Z=HK-GJ=KH-JG,
K’'=JK - KJ=GH - HG,

(3.8)

we have Z g+ Koz =€qgy T;‘JI, Zog—Kop=¢€om Tﬁu’f and
(3.4)—3.6) yield:

[H;H]=5J, [(H;J]=[J;H]=3H, [J;J]=4,

{H;G]=[G; B]=5K, [H;K]=[K;H]=3G,
[J;K]=[K;J]=K (3.9)
[G;G]=5aJ +22, [G;K]=3aH-~ 2K,

[K; G]=3aH + 2K, [K;K]=aJ-2Z,
(;2)=-[2Z;H]=3K', [H;K'|==[K";H]=3Z. (3.10)

We shall now examine the commutator X of so(3) in
(/. We have:

Fart 4: X is algebraically spanned by the five elements
(B =i(a-1), (EF)=1b,
ID=w, K =x, JZ)=y.

The proof of this fact lies on the decomposability
properties of contrdcted products of tensors of rank two
given by (2.5) and (2,6) and on the remark that a tensor
of rank zero is the contracted product of a rank two ten-
sor by either H or J. Note that © =1 on «,w,y and
O=-1onbh)and v.

Now let K=H~J, L=G~J. From (3.7d) and (3. 8) we
obtain

L+Z=aJ, HAK=Z +aJ, KAK=2L-ad,
so that

KD =aw+vy, KK)=3y, @LI)=aw-7y. (3.11)
Using (3.7), (3.8), (3.9), and (3.11) we obtain
immediately:
HY=3{a—1)-w, HG)={(GH)=3b-x,
(3.12a)
GH=3al@=1)~aw-y,
HH")=9(a-1)-8w, HG')=(GH')=9) - 8x,
{GG’)=9ala - 1) - 8aw - 5y. (3.12b)
Next, we establish
GAK+ 2K =KAG = 2K’ =2bJ - (a - 2)K, (3.13)
hence
{LK)=(&KL)=2bw — {a - 2)x. (3.14)

Now by means of (2.6) one establishes that for ¢ - ‘¢
=A+°A=0 one has:

(pXA) "J+(¢/”\A)_':3¢,/\A_ 2¢/\A',
J~(AXQ) = (Ard) =3Ar0 +2A"19,

(3.15a)
(3.15b)

hence, putting A=2Z, ¢ =H, and in view of ZXH +HXZ
=0, one obtains

(KL")+ (LK"Y =8(bw - (a—1)x). (3.16)
Finally, using (2.13) one obtains
KLY~ {LKY=%[x,v]. (3.17)
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4. CLASSIFICATION OF IR’S BY SU(2) LOWEST
WEIGHT

__Let us now examine an irreducible representation of
SL(3, R) on a Banach space 3, or, more exactly, an
irreducible representation of // on /3,,,, a dense sub-
space of 3. Irreducibility implies that 3, is mono-
geneous and isomorphic to a quotient module of //: For
every ¢ < f,,. (/¢ must be either f,_itself or zero. If,
in particular //¢ 23 then ¢ must itself be equal to
Zero.

alg’

On the other hand, since we are dealing with repre-
sentations integrable to the whole group, they must be
integrable to the maximal compact subgroup SU{(2). For
this reason there must be a lowest value ! taken by j,
such that j{j+1) is an eigenvalue of the Casimir opera-
tor of SU(2). If 3,,, decomposes into the discrete sum
Balg:@,;,[gj, 2j taking integral values, then, for any j,
Bae=UB"; in view of what immediately precedes, 37 it-
self must be monogeneous, i.e., generated by the action
of X/, on any one of its elements, X denoting as pre-
viously the set of zero rank tensors. Notice also that the
center / must be represented by scalar operators.

In what follows we shall use the results established in
the previous sections to express that H~, G%, K-, L~
vanish on A’ (and also that H®, G* vanish on A**!), This
property will suffice to establish criteria of irreduci-
bility, equivalence and unitarity.

By straightforward substitution we obtain:
(&) +2)HH) ;= (72 - 5){(2) - 1)}
- (2 - 3)(y,; - aw) +j(2j - D]a(j - 3)
=i =171}
(2f +1)HG™ + GH,; = (77 - j)™{(2 - 1!
x[ax =3 0c;9;+9%5]

+(2j - 3)ax; — (27 = 1)(j% = 35 + 3) x;

(4.1a)

+(j - 3)j(2f - V)b, (4.1b)
(4) +2)HG" = GH");= (7% = /)™ (2] = 1) (j = 2)lx;,3,4],
(4.1c)
@2 + KK == x5 +3 (52 = 2j) + aw?, (4.2a)
527 + KL+ LK) ;=3 (x;9; +9,%;) + (24* = )
X (bw - ax; +x,), (4. 2b)
@2 + KL = LK)y ==2(j = 2)x;,3;]. (4. 2¢)
We may also introduce the linear combinations:
(27 +1)[2(2j - 1HH); + (5 = 1) KK")]
=(j - D[95%a - j%(2j - 1)* = 3y,], (4. 3a)

(25 + 1)l - VEG™ +GHD; +5(j - 1)MKL" + LK™),]
=(j=1)[3bj(2/ - 1) +x;(3a +1-4(5 - 1)9)], (4. 3b)

2(2j +1)j[2(2j - 1)HG" - GH™); - (j = 1)KL~ — LK"),]
=[x;,9;]. (4.3c)

Setting both sides of these relations to zero we see
that [x,v] vanishes. The remaining four relations are
not independent. We shall examine them separately:
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@Aji>1

All factors G°, H°, K=, L~ are well defined. Notice
that if =3, relations (4.1) are not sufficient to es-
tablish [x,7]=0, while in all other cases they suffice;
this means that [x,v] vanishes on %! as well, unless
1=%. If all relations hold, we have, forj=1I:

yi=1%3a~-3(21~1)%], (4.5)
ax, +1(21 = 1)b - 5(21 — 1)(21 = 3)x, =0, (4.6)
¥ =1%(21 - 1)%(a - {2 - 21)). 4.7

The eigenvalues of the four operators a, b, x, y can
be given in terms of two independent parameters, X and
L

v, =132 - 3(1+1)?], (4.8a)
x, =121 = 1), (4.8b)
a=»x+4{(1%=-21), (4. 8c)
b==2+a(l-1)2, (4.8d)

We see that if the lowest weight > 1 of the repre-
sentation is imposed, a and b cannot be arbitrarily
chosen, but they must obey the relation

[Ba+1)~-(=1)*][(Ba+1)-4(l - 1)} - 2762 =0,
{4.9)

Conversely if two arbitrary values of a and b are
given, the above equation is an equation on w?==(I —1)?
which admits, in general, three solutions., Rewriting
it as an equation on p we have

[4p3=3@a+1)pP-[(8a+1)*~2T7h%] =0, (4.10)

and this equation must admit an integral or half-integral
positive number as a solution,

As for the number X, it is the root of the equation
A3~ (3a+ 1) +b=0. (4.11)

We point out that, for fixed X and p., the other two
roots of (4.11) are X =3{=x+n), V' =3(=r-p), while
the other two roots of (4,10) are "2 =1(@3x~-p)?, p"*
=33+ p ).

We see also that if a, b, and ! are given, satisfying
(4.9), then X is fixed as easily seen on (4. 6), unless

b_—:3a—(21—1)(2l-3)=0, (4.12)

in which case we have two possible values for A, the
values A=+(l - 1),

We shall call “relevant lowest weight” and abbreviate
by RLW the representations described in this case.

B) j=1

In this case the two sets of relations (4.2) and (4. 3)
yield only two independent equations; as shown in the
previous section there is no problem with the j -1 in
the denominator since JXK™ must vanish; the left-hand
side of (4.3a), (4.3Db) is defined and the right-hand side
vanishes, so we obtain only

xt+y,-4a=0, (4.13a)
xy,-(@=-1)x; +2b=0. (4. 13b)
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It is clear that we have the choice of two independent
parameters to label the representation. If x; is chosen
as one of the labeling parameters, the other being any
linear combination of a and y, the labeling is one to
one; but if, say, a and b are fixed, x is given by an
equation of degree three,

23— (Ba+1)x; - 2b=0. (4.14)

We check that (4.14) can easily be derived from (4.11)
by taking

Xy ==2X, (4.15a)

X being one of the three roots of (4.11). In fact if one
parametrizes a and b by A and p as in (4. 8),

a=X+3(p?=1), b=x(u?=2?), (4.15b)

we obtain in general three values for x;, namely - 2,
X+u, A—pu, We shall use the abbreviation LW1 for
representations of lowest weight I =1,

(Clji==
In this case Eqs. (4.1), (4.2) give rise to
x:y—aw:O, (4,16)

which expresses that JXJ =0, hence &J)=<{(LJ)=0,
Representations with lowest weight /=3, in abbrevia-
tion LW3, are thus completely characterized by the
quantitites @ and b, so that Eqs. (4.11) and (4. 14) play
no role here. We recall that as seen in case (A), repre-
sentations LW3 need not have an irreducible restric-
tion to SU(2) for the next to the lowest weight, j==%,

(D) j=0
In this case (4.16) holds again with w =0, so that now
x=y=0. (4.17)

Representations of lowest weight zero, LWO in ab-
breviation, are, like LW3, determined by @ and b
alone. In what concerns the next-to-the-lowest weight,
we see that 31={0}, since all skew-symmetric rank two
tensors in {/ involve J at least once; so that if pe RO,
Ko=Lo=0.

Now, examining (4,11) closer we see it has in general
three distinct roots; two of them will coincide if the
discriminant is zero, or, equivalently, if . =0 is a root
of (4.10); that is, if

b - (a +3)3=0. (4.18)
In this case (4.11) becomes
(2= b3 + 813 =0. 4.19)

Notice that there is a triple root A =0 if b=3a +1=0,

Coming now to (4.10) to seek RLW representations,
‘we are searching for roots p of (4.10) such that 4u? is
a strictly positive square integer. The six roots of
(4.10) can be separated into two triplets +(py, (g, i3)
such that u, +puy=p,;. Thus either one or three of the
numbers 2u; are relative integers (or none of them!),
Discarding the solution y =0, if any, because it leads
to a LW1 representation, and which is obtained if and
only if (4.18) holds, we are now able to give the a priori
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equivalence criteria for all integrable representations
of {/, within, of course, infinitesimal equivalence.

Theorem 1: All strongly continuous irreducible rep-
resentations IR of SL(3, R) on a Banach space 3 can be
defined by the action of the infinitesimal generators on
the dense subspace B.14 ;5 aie 18 the irreducible factor
generated by the action of {/ on ¢; =A%, The space 5*
is (21 +1)-dimensional and the scalar representation
X, of X on A% determines R up to equivalence. There
are four series of representations according to the
value of the lowest weight 1:0, 3, 1, or >1. For given
values (a,b) of the invariants of {/, there exist the
following irreducible representations in the different
series (up to equivalence):

LWO: one.

LW3: one;

LW1: if b= (a +3)°#0: three,
if b= (@a+3)*=0, b+0: two,
if b=a ++=0: one,

RLW: There are as many inequivalent IR’s for fixed
a, b, corresponding to the weight /, as many roots
(each one counted with its multiplicity) of (4. 20) are
squared nonzero integers:

s{s = 9a—3)*—4(3a +1)3 +1085h% =0, (4.20)

the weight I being equal to 3 Vs +1, If there are more
than one such roots, either b%=(a +3)?, and in this case
there are two IR’s, with I=1+7% (a +$)!/?%; or b?

#(a +3)°, and there are three of them, corresponding
to 4y, Iy, I3, such that

1<l <l <l +l,-1.

Either two of them are half-integer and the third one
integer, or all three are integers, in which case there
are two even ones and one odd one, or three odd ones.

5. NECESSARY CONDITIONS FOR UNITARITY

Let us now introduce a scalar product (¢ |¢)=(¢1¢)
which gives a pre-Hilbert structure to £,., and ask the
question whether the IR £ is equivalent to a unitary one.
We shall establish here the necessary conditions for
unitarity.

If R is unitary, {E,; must be an essentially self-
adjoint operator. Completely symmetrized polynomials
in the E,;’s must have real (imaginary) eigenvalues if
their degree is even (odd). We thus immediately obtain

xi<0, ¥ <0, (5.1)

Since representations of the RLW series depend on
a single parameter X other than [, and we have x,
=X(2] - 1)1, one has:

Theovem 2A: A necessary condition for a represen-
tation (A, 7) of the RLW series to be unitary is that x
be an imaginary number.

Since 3; and 3+ are orthogonal for j #j’, and since
H=H"+H*+H'+H +H™, we have

2 2
(Huno [Hkh(p) =2 Hyo Ith(/’) == Ez(ﬁo lHthgh(P)-
o

a==2
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Summing over the five components, we see that (HH*)
{and not only (HH)) must take as eigenvalues negative
real numbers because of positive definiteness of the
scalar product. The same holds for (KK*) (the minus
sign is due to the inner product ¢ ) for a skew-sym-
metric tensor, and K* =K with respect to the scalar
product), hence for (KK’)=(l +1){KK*),;. Thus we have
from (3,11)

¥1<0 (5.2)

which is of course a stronger condition than (HH) <0,
Check through (4. 8) that (5. 2) is fullfilled for imaginary
A in the RIW case. For /=1, (5.2) can be written in

the (xy,a) or the (1, ) parametrization as

da-xi=3(?-1)<0 (5.3)

hence a <44 <0,

In terms of the (g, b) labeling, we see that for real
numbers a and ib either one or three of the solutions
of (4.11) are imaginary according to whether b?

- (@ +3)? is negative or positive. Since, anyhow,

[ +30)7 = a][(p = 30)2 = 4] =[(2 +p)? - 9A2][(2 - )2 ~ 92%]

is strictly positive for u?<1, X imaginary, we can,
without loss of generality, multiply both sides of the in-
equality (5.3) with the above expression to obtain

b —ala-1¥=20 and a<0. (5.4)

Thus we have:

Theorvem 2B: A necessary condition for a represen-
tation of the LW1 series to be unitary is 2 <0 and y, <0,
or equivalently, A imaginary and p?<1; with respect
to the (a, b) labeling, this condition for at least one of
the IR’s defined in Theorem 1 is expressed by a <0,
b2 <0, and b®=ala - 1)?, while the condition for all
three of them is @ <0, »*<0, and b%= (a + %),

We note that (¢ +3)?=a(@a - 1)*+3(3a- 32 =ala-1)%,

We also note that for I =%, (5.2) yields a <0 and for
=0 it adds nothing.

Coming now to the case =0, we see that for a non-
zero ¢ < /3, He and Go lie in 4, (in fact they span /3,,
as easily established with the help of the relations in
[/}. The positive-definiteness of the scalar product in
B, can be expressed in terms of the Schwarz
inequality,

(Ho |Hp) Gy |Go) - He|Go)Go|Hp) =0,

where H and G stand for any (the same for both) linear
combination of the H,;’s and G,;’s. By summation over
all indices and transposition of the operators, we obtain
the condition

{HH)){GG)( ~ (HG)y(GH) <0 (5.5)
which gives, using (3.12a),

b:—ala-1)2=0, (5.6)

HH),=3(a~1)<0, (GG)y=3ala-1)=0. (5.7)

Conditions (5, 7) yield either a <0, or a=1, in which
case both (HH), and (GG), vanish, So /3, contains only
the zero vector, b vanishes as well, and we are dealing
with the trivial representation; the corresponding A, u
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values are A=0, p?=4, and A=+2, pu’*=1. We thus
have:

Theorem 2C: Besides the trivial representation cor-
responding to the parametrization a=1, b =0, the other
unitary representations of the LWO0 series must fullfill
the conditions a <0, b2<0, b*>ala~1)% or, equivalent-
ly, in the (%, p) labeling, there must be at least one
labeling couple such that A2<0, p2<1,

Finally, for the case I=3, we again use the Schwarz
inequality, separating H*¢ and G*¢ which lie in ,,,
(in fact they span it). Since H=H*+H** and H' =3H"*
+4H"™ we have SH*=8H ~ 2H’, We obtain

5HH*) ;3 =6a, 5HG"),,,=6b, 5(GG*),,=6ala+1),

{5.8)
hence
a<0, ala+%)>0, (5.9)
and
p-atla+5)=0. (5,10)

The condition (5. 9) gives either a < -} or a =0, In this
last case £4,, reduces to the zero subspace and b =0,
This representation is known to be multiplicity free on
su(2) and the spectrum of j is 5 +2N. So we have:

Theorem 2D: A necessary condition for an IR of the
LW3 series to be unitary is either 52<0, a <=1,
bt >a¥(a +%), or a=b=0. Equivalently, in the (%, u)
labeling, the condition is the existence of one among
the three possible labelings satisfying * <0, p?<% or
A :0, [.12 = 1,

Remark: If the equality sign holds in (5.10), then
B3, is of multiplicity one, and there is one p equal to
4. Notice that there exists then an IR of the RLW series
with I=p +1=2,

6. INDUCED REPRESENTATIONS OF SL(3; R)

A. Generalities

__The construction of induced representations of
SL(3,R) has been carried out by many authors!'*¢
under different assumptions, so we do not give all the
details. We point out that we speak of Hilbert just for
the sake of commodity: Any Banach space which is the
closure of a dense subspace containing the good eigen-
functions would suit our purpose; and, indeed, when
speaking of unitarity of the complementary or “semi-
discrete” series (principal series with one compact
generator in the Cartan subalgebra) the final Hilbert
space is not a subspace of the initial one, because of
the renormalization procedure (completion with respect
to a different scalar product).

We are mainly interested in establishing that all
representations discussed in Theorem 1 are effectively
group representations and not merely local ones. We
shall also treat the questions of equivalence, unitarity,
and of j-multiplicity (i.e., decomposition on the maxi-
mal compact subgroup).

Let I" be a regularly embedded (in the Mackey—
Bruhat sense) subgroup of a Lie group G, and L a repre-
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sentation of T" on a Hilbert space 7. Let K be the homo-
geneous space I'\G; G acts on the right on K by
ur-uog, T denotes a smooth section from X to G, such
that G factorizes uniquely by G =T - 7(K), and n(u,g)
will denote the square root of the Jacobian D(x og)/D(u).
Let 4/ =L*K; 7;du) be the space of square-integrable
functions from K to 7, with respect to the quasi-invari-
ant measure du. The induced representation UL of G

on // can be defined by

U*(g)f(u) =n(u,g) L(T,g7i) flu°g).

We recall the following well-known facts:

6.1)

Fact 5: If U” is irreducible, then L is irreducible
(but not conversely).

Fact 6: If L is unitary, then U” is equivalent to a
unitary representation (but not conversely).

Fact T: If L is itself induced by the representation M
of ACT, then U¥ is equivalent to UL,

B. Subgroups of SL(3, IR)

Let G =NAK be an Iwasawa decomposition of the group
G =SL(3,R); within a null-measure set, almost every
element g of G factorizes uniquely to g =n(g). a(g). k(g)
with n(g)e N, a(g)c A, k(g)e K. The subgroup N is a
real connected nilpotent group, isomorphic to the group
of 3X3 triangular matrices with diagonal elements
equal to unity. The subgroup A is a real connected
Abelian group of dimension two; it is isomorphic to
the group of diagonal 3X3 matrices with diagonal ele-
ments expa; with a; +a, +a;=0. The subgroup X is
isomorphic to SU(2).

Let A =//;(N) denote the normalizer of N in G; it is
the semidirect product of A X@ by N, @ being the finite
group (of order 8) of quaternions, which is a subgroup
of SU(2).

Let ¢ denote the homomorphism which brings G on
SL(3,R) and SU(2) on SO(3). The image ®A determines
canonically an orthogonal basis in R?; let T{ be the one-
parameter subgroup of SU(2), with elements v;(¢¥}), such
that ®(7T7) is the stabilizer of the ith component of the
basis. One can parametrize SU(2) by the subgroups 77,
writing SU(2) =T3T;T;, the factorization being unique
up to a null-measure set. There are of course six such
factorizations possible. The three parameters (¥, ¢, 9),
may be chosen in the cube [0, 47[? with the convention
that (y +27, ¢ +27,9), (P+27,¢,9+27), (D+7,~@,9~7),
and (¥, ¢, 9) denote the same element. One may also
limit the range of the parameters to 0 <y <4w, O0<gp<m,
0<9<27, in order to have a one-to-one parametriza-
tion. Notice that ¥,(27) == 1 is the element of the center
which is not 1, the same for all ¢, and that @ contains
the elements (0;)'=y,{Im) for integer I. We have for
itj

oy () =v (- ¥) oy (6.2)

so that T} and @ generate the nonconnected subgroup
T; which is the normalizer of T; in SU(2).

Now let T'f be the subgroup of G generated by T; and
A; we have T'f = ¢"1(GL(2, R)) - 7, where 7, is a two-
dimensional Abelian subgroup of N. The “homogeneous”
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subgroup I'; of I'f is the direct product I'; =A{X By,
where A{ is the intersection of A and of the center of

I'; and ®(B,;) is isomorphic to the set of 2X2 real
matrices with determinant +1. The connected com-
ponent B} of B, is a twofold covering of SL(2,IR) and

its center is the cyclic group of order 4 generated by
0y; we shall write A =BjNA, so that A =A% XA%. Notice
that Ty < B, and T; C B} and that B; =(N N B])A{T} is an
Iwasawa decomposition of Bj.

C. The induced representations

We are a priori interested in representations L of A
which are trivial on N, which will induce representations
U~ of G; thus L is defined by its restrictions L, on 4
and Ly on @. The irreducible representations of A are
all one-dimensional; they may be labeled by a triplet
K=y, 0y, %,) of complex numbers modulo the transla-
tion by (1,1,1), so that we can impose, say, X +X; + 2,
=0. If ac A and ¢{a) has diagonal elements expc, such
that oy +ay, + @3 =0, we will write

L(a)=exp(2oNa,).

There are five IR’s of @ labeled by (k), with
k=0,1,2,3,3. The trivial representation will be de-
noted by (0), the two-dimensional one by (3); the
remaining three are one-dimensional, such that (i)(o;)
=—1if i#j and (j)(0;) =1.

The carrier space £/’ of the induced representation

U*, for L= (X, k), is a space of functions from the coset
space X =A\G =@\ SU(2) to €' if k#3 and to €% if k=3,
One easily sees in (6.1) that, for any L,

UM(g)L(0))=L(o)) UX(g) <G, 0,cQ (6.3)

so that, in case k=3, U*(g) leaves invariant the eigen-
spaces of all linear combinations of the L(o,); if

AP =B @ 4B then both subspaces are in-
variant and the two restrictions of U” on them are
equivalent. Notice that (3) is an induced representation
of ¢ by a faithful representation of any one of its order
four eyelic subgroups, so that //!/? can be considered
as a functional space from Z,\SU(2) to €'.

One may identify 4/*” with a closed subspace of 4/,

the space of complex-valued functions on SU(2), by
requiring

H® ={fey; flom) =L(o,) fw)}. (6.4)

By means of the parametrization SU(2) = T3T3T3 and
in view of (6.2) we may write Table I more explicitly.

To find the multiplicity N(j;&) of the isotypic compo-
nent D? of the restriction of U¥ to SU(2), one uses the
fact that 70,/3y takes the values {-j,...,j~1,j} once
each for fixed j, so that we have Table II, with the
function E(x), defined by

E(x)=Supk (kcZ; k<2x),
being the “integer part” of x.
D. Induction by steps

Now we shall use Fact 7 to obtain information on U*
by constructing the intermediate representations V{
of T¥. Because of the choice of L =(¥, %) and of the fact
that T normalizes 7,, VI is determined by its restric-
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TABLE L Dependence on k of carrier spaces of U(e)

HEO [, ¢,9) = Sdim evm 9) = Si=d, grm 9) = ST ¢, 9)

H® 1@, 9,9) = fl=dsn, o+m, 9) ==f=8, ¢+, 9) ==f@+m, 9, 9)

H® i, 0,9) =—fl=y+m, o+, 9) = fl=d, ¢+, 9)  =—fl+m, @, 9)

7[/(3) f(JJ,<Pn9) =—f l/)+7T g+m, 19) ="f("¢: @+, \9) = f(¢+7rv ¥, 19)

H® T, 0,9) ==fp+2m, 9, 8)

tion on T’y =A§{X B;; the restriction to A{ is given by the VE and ViF are equivalent so that U” is equivalent to
number A; (or A; - $3,2, if we do not impose the sum to UL, Since the index 3 has been arbitrarily chosen we
vanish), Putting, for sake of brevity, A=2; and p =y, deduce:

=3 =1,), the restriction M%'* to B, of V§ depends
only on u and %2 and not on A. The representation space
7 ig a space of complex-valued functions of the

variable pe [0, 47, satisfying
TG+ 1) = L(o3) f()) = M5 *(o3) F(£) (6.5)
or, more precisely
T = FI ={f W+ 1) =), (6. 6a)
7= ?‘2’ ={f; 1@ +m) ==}, (6.6b)
FUID L+ 2m) == F(D)), (6.6¢)
and we also must have for j# 3,
MY Hoy) () =L(o,) f(= 1),
or, more precisely,
ME ) F) = @ (= ¢), (6.7)

It is immediate to see that LZ(T\SU(2), 7'V, du)
//‘0’ 4449 and that the same happens for the couple
11, 2}; for k=% there is no new splitting.

Calculating the infinitesimal generators X,Y,J of
the connected subgroup B}, which satisfy the commuta-
tion relations

[x,¥]=2J, [J,XiYV]=F2i(X+iY)

we obtain

a 2
X* 77" = exp(F 2{9) <1—ui1——) J“:E(-E}- . (6.8)

']dl
The properties of these representations are quite well
known, so we limit ourselves to giving the main results
without details.

Let 7 be the transformation 1 =— 2 on the indices of
* and 0; T brings ¢ to -y, it leaves invariant the rep-
resentations (0), (3), () of @, and it permutes (1) and
(2). VE like M4** is irreducible except for a discrete
set of cases, for which it is indecomposable and con~
tains a finite number of irreducible factors. So if one
denotes by V& (resp. U”) the completely reducible
representation which has the same factors and factor
multiplicities as V¥ (resp. U¥) one easily proves that

TABLE II. Multiplicity of 07 in &,

I3 Range j N(jik)

0 integer EGj+i)+=1)
1, 2, 8 integer E(i+3)

4 half~integer 27+ 1))

2116 J. Math. Phys., Vol. 19, No. 10, October 1978

Theovem 3: Let L =(X, k) be an irreducible represen-
tation of A, trivial on N, and 7 be a permutation of S;
[with T(O)_(O) =0 )]. The irreducible factors of
the representations X and U™F induced by L and 7L
=(7X, Tk) are in one-to-one correspondence and the
corresponding factors are equivalent to each other.

in order to study the factors of M*** we introduce,
for fixed k and I 1 +'§IN, the space 7% and 7'! by

ad} 3-1:(*}11 and 84 FUe gt (6. 92)

o F e P 6. 9b)

explin ) 71 < \171‘L [ +2IN. (6.9¢c)
We shall also define for i=1, 2, 3:

GEEE =4 0 LHTSUQR) 7, (6.10a)

GIR = 0 LATT\SU(2); 7). (6. 10b)

It is easy to check that if 7'7# {0}, then 7' is (I=1)-
dimensional for integer ! and infinite dimensional for
half-integer [. The irreducible factors of M4'* operate
on 7' and 7'" when /=i | +1. The restriction of M}%'#
on ]“ is the coupling through o, of two contragredient
representations of SL(2,1R) belonging to its discrete
series of UIR’s, and it can easily be seen that M%'*
17 is equivalent to M;***| 7', even if k=1 or 2. This
is not the case however for the restriction to ?”, as it
is not for VI irreducible,

The corresponding factors of U”, acting on "% and

(3%, will be denoted by Uy!’ and Utk the param-
eter e—u/lul being relevant only if 2 =1 or 2, and
UpiBlie~eltili=t. ¢ may be omitted if k#1,2. By cyclic
permutations over the indices one can define analogous
splittings through the other subgroups, if any.

Notice that both factors are reducible for k=3, and,
like U%+1/D they are multiples of order 2 of their iso-
typic components. Notice also that for =1 and k=1, 2,

1 7% This means that g =0=2X; =X, so that
D~ D

To obtain the j-multiplicity of each factor we intro-
duce the functions 3 (7;1) and p;(Z, %) (the latter being
invariant under permutations acting on  and &, so that
we put =3 in what follows):

2 iflcl+1+NN and k=3,

i < =1 2
oyl 1) = 1 iflel+N and A or 2, (6.11)
1 ifle2+NN and k=0 or 3,
0 otherwise,
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TABLE TII. Splitting in induction by steps of U»®,
A=y Mg, A), I=141 0 =20, €= | M=21 /(M =N), ;3 k) = 0.

Factor Carrier space Inducing factor
U%'“ q&t;k X@(M?,”'”'kl}”)
Ug,]l;k,e gsll;k A ®(M§(l-1),k|}]l)
1+3(j-1) ifjel-2+2N,
M@l = (3(j=1+1) if jel-1+2N, (6.12)

0 otherwise.

Notice that if 2=1,2, or 3, then N(j;k)=M(j;1). We
then have the following proposition,

Proposition 1: When p,4(l, 2)# 0, the multiplicity of
[’ in the factors of U for L=(5(-=A+el—¢, = A =€l +¢,
2)); k) is py(l, k) M(j;1) for Uy'' and the complement to
N (]';k)1 for Uk ik The latter is unbounded if and only
if k=3.

Most of the above results and notation are summarized
in Table III.

The further study of V:f from the unitarity point of
view gives sufficient conditions for U* to be unitary
(within infinitesimal equivalence) according to Fact 6.
Thus suppose Vg’ or one of its factors to be unitary.

If we replace 73/3y by —n in (6.8) and express that
- (X +4Y)(X = {Y) must be a positive self-adjoint opera-
tor we obtain

(mx1)?-ut=0 (6.13)

for every n. If M4'* is irreducible the lowest value taken
by (#£1)* is 1, 4, 0 according to whether =0 or 3, 3,

1 or 2. If it is reducible and p ==~1+1, the lowest value
of m1)?is p?=(1=1)% in M'""*; § in M1%1/2; 0 in MI*
k=1,2; and 1 in M'"* k=0, 3; so that MI3/21/2 ppi20,
M3, and M'™* are equivalent to unitary representa-
tions. In view of the fact that A; must be imaginary to
have a unitary V{‘ and using Theorem 3, one obtains for
the induced representations:

Theorem 4 (sufficient conditions for unitarity): The
following representations of G are unitary (with
mefl,2,3)):

(@) UMY for any k and A€ iR,
(0) UB® ang U™ for A, ciR and ppc R, 0<pl<I,
(c) UR1/D if there is m such that 1, € i R,
bpeR, 0<pl<i,
(d) U%Y (1>1) if ), iR,

(e) U::]Z;O’ U:tn.]2.m’ U)’;:]3/2.1/2 if KmEiIR.

E. Case of multiple splitting

The splitting of U” into the factors of Table III is co-
ordinate-dependent since it derives from the induction
by steps to I'f. If more than one of the numbers
g =2\ — Ay) are integers or half-integers (in which
case all of them are, since p; + iy +p3=0) U* may be
reducible in more than one way. So we are going to
study the splitting of 4/* into irreducible subspaces.
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Let us first observe that if V¥ is not irreducible, in
which case 2y, € Z - {0}, then there is one and only one
invariant proper subspace I 7, of 7'®, isomorphic to
either 7* or 7', for I=1+ |y, ! as seen through (6. 7)
and (6. 8), the representation being indecomposable.
The corresponding invariant subspace of /7/(’“ (which
is fixed once and for all by the parametrization T3T5T;)
will be denoted by gf“ and it is one of the two sub-
spaces defined by (6.10).

To carry on the reduction of U* we shall begin by
proving four lemmas:

Lemma 1; For fixed k and i € {1, 2, 3} at most two of
the three Vi*® are reducible.

Proof: Let i1y =32 — Ag) and p, 3 be defined by cir-
cular permutation. Reducibility of Vi** implies u,
half-integer (resp. odd, even) if z=3 (resp. k=0 or
i; ##0,4,%). This cannot happen for i=1,2,3 and fixed
k, because pq+pu,+ p3=0, Q.E.D.

Lemma 2: Let A®A’ be a decomposition of C***! into
two eigenspaces of the generator Jy, of SU(2) repre-
sented by /° on @¥**!, with I>1, Let C be the two-
dimensional subspace generated by the eigenvectors
¥, and ¢_, of J,;. Then CM A #{0} implies A’ ={0} and
conversely.

Proof: Since [ > 1, the five-dimensional SU(2) sub-
module J*' of the enveloping algebra of su(2) does not
vanish identically on €**!, If CN A #{0}, then A con-
tains an eigenvector of (Jy)? - 31(I +1), which is an
element of 'V, for the eigenvalue #(2/ - 1); since 4 is
invariant under J,4 it is also an eigenspace of each ele-
ment of J’, hence of [J¥,JP]=J® +JV  hence A
is a proper invariant subspace of €**!, hence it is
€%*! itself because of the irreducibility of /)’. Q. E.D.

Suppose now that Vf‘ and VZL are reducible. We are
interested in the intersection G{® N G§* and the sum
gi’” +g§"). We can always assume, without loss of gen-
erality, thatl=1I,>1,=1’ and that I 7 = 7%, Lemma 2
still holds if we take a fixed multiple of /)* on a space
F=€""'9 E instead of /' on €?"!. Taking for F the
subspace /4; of LXSU(2)), on which the Casimir takes
the value I(I +1), with respect to the left regular repre-
sentation of SU(2) (which serves to indicate the SU(2)
multiplicity in U%), putting CG{®, ACG, we may
apply Lemma 2, knowing that A’ # {0} (because I’ <1).
Thus we obtain:

Lenima 3: Let 1y, be the lowest value of j for which
HiNGE* 0GR #{0}, with I=1,>1,=1’; then I, > 1.

On the other hand, let Mult(j; ;%) denote the j-
multiplicity of G{*’, obtained from Table III for the
different choices of 7 7, and N(j;k) the one of 4® as
indicated in Table II. The inequality

Mult(j;1;2) + Mult(j;2;2) SN (k)

is always satisfied, except for the case of integer '
and Iy, of I7,=7" and of j >, +1,~ 1 as seen by direct
computation. So we have:

Lemma 4: Let Iy, be as in Lemma 3; let [, and [, be
integers greater than 1 and I 7, = 7' for i =1, 2; then
GPNGE {0} and 1y, <1 +1, -1,
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One can now observe that the expression of the in-
finitesimal generators of s1(3,IR) depends only on X, so
that the expression of the Casimir operators of G is the
same for U*® and U®* and independent of the splitting
(if there is one) of #/*'. One can see without any cal-
culation that they must be represented by scalars since
they must be scalars on the subspace of constant func-
tions of SU(2) which is the only eigenspace in /4 for the
eigenvalue zero of w, Their exact expression has been
calculated by Sijagki in Ref. 4, the correspondence be-
tween his notation and ours being

(Zp’ (p7 S)_" (a’ ﬁ’ ,y)’
A= (0, +10,)/3, p—X +ixy, [—
b— - 24il,.

Kmin)
a—4l, +1,

Remark: The suspicious reader who will carry out
the calculations will observe that the X’s and u’s intro-
duced in this section independently of those introduced
previously happen to coincide, for the biggest relief
of everyone who has read that far!

The fact that the Casimir operators are expressed
by scalars makes possible the use of Theorem 1 which
gives an exhaustive and finite list of all possible irre-
ducible factors of U*. The limitations on the RLW rep-
resentations enables us to find their multiplicity and
the multiplicity of /)7 in each factor by mere subtrac-
tion, using the results of Table III. In particular one
can see that, if {; =1, >1 are two lowest weights which
effectively occur, the third one is either {;=1; +1,-1
>1;, corresponding to the condition

(g =23) 3= 2y)>0 (6.14a)
or l;=1;-1, +1<1;, corresponding to
(Mg = Ag)A3 =) <0, (6. 14b)

It is easy to check that if the two {* are of the same
kind, then (6.14a) holds and if not it is (8.14b) which
is true, so that one obtains:

Lemma 5: When I =1 >1’=1[,, a necessary and
sufficient condition that § =G} *NGi¥ #{0} is (a) L and

I’ integers and (b) G$¥ =(G5"% [or, equivalently, (6.14a)].
2 3

If and only if that happens, then the lowest weight of

g is I +1’~1 and there is a finite dimensional factor in
U*, acting on 4‘® /(GF5* +(5*) with highest weight
1+1"-3.

We shall now proceed to the ultimate reduction of y*
and each of its factors. The three different parametri-
zations (A, i;) of A transform to one another by

0w =so,m- (71 53)

so that

{“alzsupi\“il@ “a\2'3|)\al-
On the other hand, if |y 41<3Ix,l, then
25up; | i | =|nal +3[2a].

From what precedes one obtains (denoting by U the
direct sum of the irreducible factors of the represen-
tation U):

Theorem 5. Suppose that more than one of the num-
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bers 21, obtained from X are nonzero relative integers
and let I; =1+ [y, |; for any couple (A,I) obtained from
Xlet '=3(-1+3D)+1, I7=511-1<3Ix] |+1,
M=3[=-2+ -1 A1}, A"==2=2’, and let ¢ denote
the sign of the permutation 7: (A, 29, A5) = (A, X', X"} and
(i,7',i")=7(1,2,3). Let k{a, b) be the function defined
by

ac?+N,2+2N,2+2N,1+2N,1+2N,
bc3+IN,2+2IN,1+2N,2+2N,1+2N,
kla,b)=%,0,1,2,3,.

Then if and only if [ <3|xl+1 and 3l +3[x[+1c 2N
(in which case I’=3|)X [+1), we have the following
decompositions for &’ =Tk{,1’):

U(x.k’):‘ﬁ?,]l;k’.e+'(7§'l;}l',e+[—];t:,[l"
Ty =Tiv e 4 TH
R LELL, UL, ST

If and only if /<3Ix[+1 and 2(,1”) =z, then
TR/D et T 0 L T,

If and only if 7 <3Ix{+1 and k({”,I)€ N, then
UptEEh e gEnlte 1 UMY S with k7 =TR(7, D),

All factors appearing in the right-hand side of the
decompositions are either irreducible (if /< N) or
multiples of order two of an IR (if € § +IN),

Remark 1:; The finite-dimensional representations
Uil ¢ are equivalent to the well-known tensor repre-
sentations (I -2, 1”7 ~2) fore=1 or ({”-2, [-2) for

e==-1,

The j-multiplicity of these representations is ob~
tained by adequate subtractions from Proposition 1 and
Table II. The results are shown in Table IV(a)—(e);
since for given X there is no multiple splitting for all
values of £ (for some of them there is no splitting at
all, e.g., {,1/,17e N and k=3), only the decomposi-
tions due to Theorem 5 figure in these tables. We point
out that for half-integer ! the representations are
reducible and they are multiples of order two of an IR,
so that the j-multiplicities of the isotypic components
are obtained from Table [V(a) and (b) by taking the half
of the values given (all of them are even, of course).

7. SUMMARY AND REMARKS

(a) The exhaustive description of IR’s of SL(3,R) is
given in Theorem 1 (Sec. 4), in terms of the values
taken by the Casimir operators and of the lowest SU(2)
representation which occurs. In Theorem 3 (Sec. 6) the
equivalence criterion between induced representations
is given,

(b) The necessary condition for unitarity, in Theorem
2A +2B +2C +2D (Sec. 5), and the sufficient one in
Theorem 4, coincide. We are not aware of any previous
rigorous proof of the necessary condition. The sufficient
condition has in fact already been established by
Sijatki, although the formulation of his results is not
very clear in what concerns the supplementary series;
we have in fact proved by the induction-by-steps theo-
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TABLE IV. j-multiplicities in multiple splitting.

(a): I;=1 and I,=F’ half-integers, ¢,¢'< {0, 1}

j=l=2n+£-2 Al 172, (3,10,+ 77 AL%
jeP=2n +E -2 Ui Uyt ‘
1<j<l 2j+1 0 0
I-2<5j<l jri+E—1 2n 0
I'-2<j jHl+E-1 UV=l+t' -t 2n’

(b): I,=1 and I;=1” half-integers, ¢, £”< {0, 1}.

j=l=2n+£-2 LRI U At
G 1T =0 AT =2 1,3 1 3
1/2<j<l 2j+1 0 0
[-2<j§>1" jHl+E—1 2n 0
I"=-2<j I+E+I"+E" =3 2p 2n”

(©): Yy=1=2p+1, U3=1"=2g+1, ,=I'=2p+2q+1.

3, . 1,1, . L 10 ,- X 1251,
j=2m+t, ke {0, 1} ghitd, Uil ul’; uy Us)y vy
0<j<l m+E 0 m+E 0 0 m+E
1-2<j<l” b m=p+é P 0 0 m+é
"—-2g7<l b m—p+é¢ prg—m=¢& 0 m—q+é q
r-2<j p q 0 mop-gti b 4
(d): Uy=1=2p+2, Iy=1"=2q+1, L,=0"=2p+2q+2.
j=2m+ g, 56{0, 1} U}vll;On Ulifé”"" Ugg”"}* Ug‘”' U§f;:“’,- Ué".ll“;Z.'
0sj<l m+1l—¢ 0 m+é 0 0 m+£
I-2gj5<1” pt1l-—-¢ m=p bp+E 0 0 m+é
" =2<j>0 p+l—¢ m=p prg=—m 0 m=—qg+é g
I'-2<j p+1-t q 0 m=p=—g P+ q
Osj<il” m+1l=£ 0 m+¢ 0 0 m+é&
"-25j<l m+1=£ 0 q 0 m—g+i q
l-2<j<l’ p+1l—& m—p prqg—-m 0 m—q+& q
'-2<j p+l—¢ q 0 m-—p=-q pté q
(e): Iy=1=2p+2, I;=1"=2g+2, l,=1'=2p+2g+3.

. u e o2 - 11733, =
j=2m+¢, £e{0, 1} Ul 11315+ U{.fi”' Ut Ugt Uéfz’”" ur
O0sj<l m+E 0 m+1=-¢ 0 0 m+é
l=2<j<l” p+E m=p pH1-¢£ 0 0 m+ ¢
" ~2g4i<l p+éE m—=p prg+l—m—=¢ 0 m—q q+é
I'-2<j p+E g+1—¢& 0 m=p=qg+f-1 p+1-¢ q+¢

rem that both /=1 and I =0 occur as lowest weights for ACKNOWLEDGMENTS

this series [case (b) of Theorem 4].
The author wishes to thank D. Arnal, M. Flato,

(c) The SU(2) content is studied in Sec. 6, as well as G. Pinczon, and M. Vergne for discussions and ex-
the decomposition of the induced representations into changes of views on the subject of this article.
irreducible components. When no RLW occur for given
values of the Casimirs, the multiplicity of /7 inside
an IR increases (roughly) like j if j€ 3 +IN, and like
37 if je N, as described in Table II. For IR’s of the APPENDIX
RLW series it increases like %(j— 1) regardless of the
parity of 21, If more than one RLW IR occurs, the /)’
content is given in Table IV(a)—(e); notice that there
are factors having bounded or even constant j-multi-
plicities in this case.

We give here, without proof, the expression of the
compact infinitesimal generators and of the non-
compact generator Hyy in terms of the Euler angles

b, @, 95:

{d) The finite-dimensional representations—corre- Jy= ;—3 ,
sponding to integer j only (the twofold covering is not
isomorphic to any matrix group)—yield, by complexi-
fication, the UIR’s of SU{(3)—see Remark 2 following
Theorem 5. On the contrary, the UIR’s of the other real 3
form SU(2,1) do not appear here: Except the trivial Hyy=— sin2¢ i (1 +2)(3cos?p~1)
IR, the ones treated here yield finite-dimensional rep- ¢
resentations of 5O(2, 1) © SU(2,1), hence nonunitary
ones.

: . Ny D
Jig £ idy = exp(+9) (iza—q-) tcolgy =5 - sing 31}')) )

+sin%gp (sinZdJ % +(1=p) cos21p) .
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Scattering in the depth direction for an anisotropic random
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We consider in this paper the asymptotic nature of scattering in the depth direction in an anisotropic
random medium like the ocean. We use the coherence equation developed previously. It is shown that as
the propagation distance goes to infinity, the integral of the square of the coherence function, {f‘],
approaches zero. [The integral of {I"} itself remains constant as a result of conservation of energy.] It is
pointed out, however, that the approach to zero is expected to be very slow once we are well into the
multiple-scatter region. For most practical cases, a quasi-asymptotic state is reached for which the
integral of the square of {f‘] is approximately a finite constant and the shape of [f‘] no longer

changes.

1. INTRODUCTION

Beran and McCoy':2 derived the following equation
governing the coherence function in an anisotropic,
statistically homogeneous random medium,

A By &, 2} =-270,0, 0, )T xra, £, 2}

+2'”_[:63(x127 &y g;){f(xxzy oy Z)}dgi,-
(1)

We have here

- 1 .= ] R
{r(xm’ Lys Z)}:ﬂf exP(iylzgy){r(xlz» Yi2» z)}dym,

-

where

{f‘(xxzy Vi2s z)}:{p(xu v, 2)p* (x5, v, Z)}:
Xip =Xy — Xg,

Viz=Y1 = Va2

The pressure is denoted by p(x, v, z), where z is
the propagation direction, y is the depth direction,
and x is the transverse direction. The brackets indicate
an ensemble average and {f(O, Ly z)} gives the angular
spectrum in the depth direction. The coherence function,
{1 x,,, Y12, 2)} is assumed to depend only on the trans-
verse difference coordinates x,, and y,, (in addition to
z). Thus the initial condition at z =0 must satisfy this
requirement. For example, a plane wave, propagating
in the z direction, is an appropriate initial condition.

The function T,(x,,, y,,, ;) is given by

_ AR L By, m, z,t0?
03(%125 V125 é’;):(};> g7 fo cos(z{;‘; -7 +_¢122% )

1 /2
x< kzm ) [J.-o U(xIZ’ y{z’ 212) dy{zﬂdzlz (2)

where 0(x,,, ¥,,, 212):{“,("1: Vis 201 (%5, 2, 25)}

?Permanent address: Department of Mathematics, Case
Western Reserve, Cleveland, Ohio,
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is the correlation function associated with variations
in the ocean index of refraction. The wave number k
is written as

P =F(1+p"), (3)
where % is the average wave number,

The function o is characterized by two length scales,
1, in the horizontal direction and [, in the vertical
direction. The following conditions are assumed to be
satisfied:

12
Rl,>1, kly 1. 4)
lH
The function G,(x,,, &,, ;) is the Fourier transform
of Ty(x12, Y12y 5;)

In Ref. 1 it was conjectured that {I'(0, ¢,, 2z)} reached
an asymptotic state as z —«, (z will be suitably
nondimensionalized later in the paper.) Here it is
shown that such an asymptotic state cannot exist
but instead a quasiasymptotic state is to be expected.
We first show, by considering the equation governing
J2=[2{T(0, ¢,, 2)f dt,, that a strict asymptotic solu-
tion for {I'} cannot exist. We next examine the nature
of d{T'}/dz and dJ?/dz and show that a quasiasymptotic
state is expected in the multiple scatter region. The
existence of this quasiasymptotic state is demonstrated
by numerical calculation using typical ocean
parameters.

2. NATURE OF THE SOLUTION OF EQ. (1) WHEN
X, =0
A. Basic equation

When x,, =0 we find from Eq. (1)

LAE, £, 2} =- 215,00, 0, L{FO, £, 2}

+21 (5,00, ¢,, £{(0, &, 2)}d.

(5)
We can show from Eq. (2) that ,(0, ¢, &}) is
symmetric in ¢, and ] and we note that
© 1978 American Institute of Physics 2121



53(0, 0, gy):f_igs(o’ $ys C;) d{;. (6)

B. Conservation of intensity

If we integrate both sides of Eq. (1) with respect to
dg,, we find

;1% J{FO, €, 2} dt,=0 o

and

I=[C{F, ¢,, 2)}de,, (8)

where f, the intensity, is, as demanded, a constant,

® i~ 2
C. Variation of J? T/‘ {F(O, §.2 } as,

We next multiply Eq. (5) by {I'(0, ¢,, 2)} and then
integrate both sides with respect to ¢,. We find, after
some manipulation, in which we make use of the
symmetry of ,(0, £, £),

FLAEO, ¢, DF

:_21;]_:f [{£(, ¢, 2z} - {£0, &, 2)}P
XF,(0, &, &) de,dil. (9)

D. Nonexistence of an asymptotic state

If {T'(0, ¢,, 2)} is to become independent of z as
z —, then the integral

stj_“:{f(o, &y 2)F di,

must, of course, become independent of z. From

Eq. (9), we see that J° must decrease as z increases,
Since it is nonnegative, its limit, as z — <, must

exist. Now, (d/dz)J? is strictly negative so long as
{I'(0, ¢,, 2)} is not constant (in ¢,). Thus, if {F(0, ¢,, 2)}
has any limit at all as z — «, the limit must be a
constant (in £,). This constant must be zero, for any
other would violate the conservation of energy. Hence
we conclude that {f'(0, ¢,, z)} does not approach an
asymptotic state in the usual sense of the term.

E. Quasiasymptotic state

If we had no further knowledge of the nature of
3,(0, ¢, £;), we could not say more about the nature
of {I'(0, ¢,, z)} as z - «, In physical problems, however,
we usually have additional knowledge about the nature
of this function. We see from Eq. (5) that 5,(0, ¢, £})
is a scattering function that determines how much
energy is transferred from ¢ to ¢,. From Eq. (2} we
find that

2

~ I3
03(0: gy’ é;): g%

Xf_: EXP(ZS.LE (- €;2)> 0,(0, s,)ds,, (10)

where

a,(0, SZ)E_/_.OO’(O, s}, s,)ds).
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In general, ¢,(0, s,) is a function that has a maximum
characteristic decay length /,. From Eq. (10), we see
that if ¢/ is of the order (2%/1,)'/? or less energy is
transferred from ¢/ to a range of values ¢, where ¢,
is also of order (2&/1,)'/* or less. If, however, ¢!
is of the order C{2%/1,)'/2 where C> 1, then signif-
icant amounts of energy are transferred only to
those ¢, for which ig;- g,/ ]gyl <« 1. This may be
seen more clearly if we write

~ 7
08(0, o §;) = 87

x fZexp e 0, + £)(E, - )00, 5 )as,.
11

If £/~ O0[C(2%/1,)* /2], then the value of the exponent
will be very large unless {¢)—¢,1/i¢,| <1, If the
value of the exponent is very large, the exponential
will oscillate rapidly on the scale s,=1, and little
energy will be transferred from ¢} to £,. Hence we
may conclude that as the characteristic decay scale
of {T'(0, &, 2)}, say, &, grows large [that is,
> (2F/1,)' /%], less and less energy will be scattered
from any particular ¢, and hence a quasiasymptotic
state will be reached, We cannot of course prove that
this is true for all functions 0,(0, s,}. However, we
expect that if 0,(0, s,) does not have very unusual
properties {F(0, ¢, 2)} will behave in this manner.

We note that the above behavior is consistent with
dJ?/ dz (suitably nondimensionalized) becoming small
as z becomes large. This may be seen from Eq. (9)
for when (¢!~ ¢,1/l¢,1 —0, the difference [{I(0, ¢, 2)}
- {F(0, ¢, 2)}F similarly approaches zero. On the
other hand, if ¢, -¢,1/1¢,1~0(1), 04(0, &, &)
approaches zero when ¢ becomes very large. We
therefore expect the integral on the right-hand side of
Eq. (9) to approach zero as z — =,

In order to test the validity of the above arguments,
we have performed a numerical calculation and we
present the results in Figs, 1 and 2.° The parameters
have been chosen to model a real ocean situation and
we have chosen

A 1 N\t
=g <1 + ——(ZEPM)E (§§ - §;2)~> s (12)
where p,=27/1, and A is a constant which determines
the strength of the scattering. A discussion at ocean
temperature fluctuations may be found in a report by
Moseley and Del Balzo.*

5;(0, &, £3)

As an initial condition we would ideally like to
choose a plane wave incident in the z direction. For
numerical reasons, however, we could not use a
delta function in ¢,. We used instead the condition

bl exp(- b%¢ 2/2}. (13)

—
Vam

f(O, gy’ 0)=

We chose the following numerical values which would
be typical of ocean propagation:
k=.42m (=100 Hz),
Py =1X10"p! (lH:g‘:' =20 km),
M

Leitman, Schwartz, and Beran 2122



&

FIG. 1. {T(0, £,,H)} vs. ¢, for various j .

A=.08,
b=3813 m.

We use the nondimensionalized parameters,
J§=215,(0, 0, 0)z, ¢,= £,(/¥2Z).

When 7> 1 we consider that we are well into the
multiple scatter region. When 7 «1 we are in the single
scatter region,

In Fig. 1 we can see the change in {['(0, ,, )} as a
function of y. The change from =0 to =2 is very
significant. However, beyond jy=4 it is rather small.

The same trend is observed if we study d/?/dz. Here
we nondimensionalize Eq. (9) by dividing both sides by
27J%5(0, 0, 0), This yields

J— 1 d .
c—jf d_]
— _fm b [{f;(o! Ey; Z)}_{f(o’ é;’ Z)}]z
== AT, ¢,, 2)Pde,

(5,0, ¢, &)
- de¢. de!
L’-.,%(o, 0, ehde;,

K J?

We see from Fig., 2 that beyond the distance 3~10
the value of « is less than ~,01. In fact, beyond y~5
the value is very small to values when §<2,

We emphasize again that we do not wish to imply
by the above analysis and this numerical example that
one could not skillfully choose initial radiation patterns,
{r(o, ¢,, 0)}, and functions, &,(0, ¢,, ¢!), for which a
quasiasymptotic state would not be reached until dis-
tances z of order of say, 100, Our purpose, instead,
was to demonstrate that for the problem, as it is often
formulated, a quasiasymptotic state is to be expected
as soon as we are well into the multiscatter region.
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FIG. 2. x, vs. 7.

3. SUMMARY

We have shown in this paper that a true asymptotic
state for {I'(0, ¢,, z)} cannot be reached in the limit
J=2m0,z —~=, However, for scattering functions such
as the one given in Eq. (12), we expect to find a
quasiasymptotic state in the multiple scatter region
(7» 1). These functions are characterized by the
fact that when ¢! > (2kp,)'/? the function G,(0, ¢,, &})
— O unless ¢, - 1/(2kpy,)'/? < 1. The results were
demonstrated by a numerical calculation.
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Conditions on the uniqueness of the solution of the elastic

unitarity equation
[. A. Sakmar®

Applied Mathematics Department, University of Western Ontario, London, Ontario, Canada

(Received 25 April 1978)

We report new conditions for the uniqueness of the solution of the unitarity integral equation. These
conditions follow from the consideration of the smallest value of the integral.

The elastic unitarity equation, considered as an in-
tegral equation for the phase of the amplitude when the
modulus is known at all angles, has been investigated
by several authors!=7 in the past. We write the equa-
tion as

1
s'ma(z):ﬁ%f'
€1

Here f is the amplitude the square of which is the dif~
ferential cross section. ©(K) is the step function and
K=1-x*-9y*-22+2xyz. q is the center of mass wave-
number.

oK)

LA fN a(y)) &) e

I f2)]

cos[a(x) - dxdy.

L

We consider the integral

L)L) oK)
zﬂff | 2)1 7K ——dxdy =sinu(z), (2)

which is a function of z. We shall call the supremum of
sinu(z) for all values of z(-1 <z < +1) sinu. Its smal-
lest value will be called siny, Since all the quantities
under the integral are positive and the amplitude is as-
sumed not to vanish anywhere, sinv will exist. It is
clear that

sina(z) < sinu(z) <sinp. 3)

We consider a{z) in the domain (0, 7/2) (see for details
Ref. 2,3). Since the smallest value of the unitarity in-
tegral (1) is obtained when cos{a(x) ~ a(y)] is smallest
| a(x) = @(y)] must be largest. But the largest value of
a(z) is p. Hence

. >4 (LU
S“‘“(Z)’znfz 72!

=cos isinp{z) = cos usinvy.

oK)
COS U —— 7K dxdy @

We shall define this as
sina (z) = siné,,, = cos psiny . (5)

Hence the smallest value of the unitarity integral will
be obtained when

a(y)]=cos(u—0.,,) (6)

1/2 4 ginp sinv]=cospay,  (7)

cos[a(x) -
=cos p[(1 - cos? usin*v

where Eq. (5) has been used. Hence

sina(z) = f] lf(f;(l l)fl cosu a, G}K) dxdy @

=a, cospsinu(z) = a, cosusiny.

~

2)Research supported by the National Research Council of
Canada.
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We shall write this as
sina(z) = sinf ;= a, cosusiny. 9)
It is clear that cos{u —6,,, ) >cosp or a, >1. Therefore,
8 > O (10)

min

Substituting Eq. (9) into the integral (1), we find

smol(z)>—ff 1f§9}(i2;1f(y)l cos (i min)g\;——)dxdy (11)

Here

cos(i— 07, )=cosu[(l - & cos®usinp)/?
+ a, sinp siny] = cos u a,, (12)

where use has been made of Eq. (9). Hence

sina(z) » a, cospsinu{z) > a, cos siny. (13)
We shall write this as

sina(z) » sind], = a, cosu sinv. (14)
It is clear that since 67, > 6_, ,

cos(u—6,)>cos(u=16_,), a>aq. (15)

Thus we have the sequence
a, = {1 - cos®u sin*v)"? + siny siny,
a,= (1 - a&® cos®usin*v)¥2 + q, sinp siny,

a,=(1 -a’,cos’p sin?p)/2 +q,_ siny siny, (16)

where each a, is larger than q_,. If this sequence did
not have a limit, then sina(z) would not have a lower
limit. We shall now prove two results:

(a) lima"(u,v):(l—2sinusinv+s'mzv)'1/2 ) amn

newo
This limit is obtained by setting in the Eq. (16) for
a,_,, a,and solving the equation. In particular for
u=v, we have

lima =1/cosg.

n-o

{b) If we call lim ¢, =a, then
e o

da =0, (18)
dv 1,
This property can either be obtained by differentiating
the Eq. (16) and then going to the limit a_, =¢q,, or

directly from the Eq. (17). With the relation (17) we
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can write
sina(z) = acos L siny

_ cos usiny
T (1 - 2sinusiny + sin?p)t/?

=sinfy,,. (19)

We now consider the uniqueness question of the solu-
tions of the Eq. (1). Assume that there exist two solu-
tions a{z) and B(z) with | fl =|g| where a and § are the
respective phases of f and g. Following the method of
Martin,® we can write

Imf(z) - Img(z)

_4q Imf(y) +Img(y)

gt | [ o~ mston [R5 R

Imf(x) + Img(x )] o(K)

B el 4 + e .
Reflx) + Reglx) [Ref(y) + Reg(y)] 2 T dxdy (20)
The large bracket under the integral can be majorized
by taking the largest value of the first term and the
smallest value of the second term. The integration of
Ref(y) + Regly) gives the real parts of the S-wave partial
waves which are bounded by 3 each so that their sum

is bounded by 1:

| Imf(z) - Img(z)| < (21)

The uniqueness condition for the solution of the integral
equation thus becomes

(tanu —tand,,, ) max |Imf -

tany - tandy, <1. (22)
Using the Eq. (19} in (22), we find the condition

- siny — cos
smv>——.“—# . (23)
1 -sinucosyu

Thus the solution is unique if the lowest value of the
integral (2) and its supremum satisfy this inequality.
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We notice that the relation (23) is always satisfied if
s 45°.

That is when u < 45°, for the solution to be unique
there is no lower bound required on the integral (2).
Hence the modulus of f has complete freedom at the
lower end.

The relations (17), (19), and (23) are our main re-
sults. As with the existence condition (sinu <1) for the
solutions of the unitarity equation, the inequality (23)
is a sufficiency condition and may not be necessary.
For example, Martin® has shown that for up to sinu
=0.79 no lower bound is needed, whereas the inequality
(23) restricts sinv to siny > 0.327. On the other hand
for larger values of sinu, that is, for larger than 0.79,
the uniqueness has not been proven yet. The inequality
(23) should fill in this gap as a sufficiency condition in
the region 45° - 90° for the uniqueness of the solution.
It may be that for up to sinu =1, that is between 0.79
and 1 no restriction is needed for the lowest value of
sinpu(z), even though we do not know this. However, we
feel that with more input for the modulus function one
can obtain more definite results.
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Tensor fields invariant under subgroups of the conformal

group of space-time?

J. Beckers,b) J. Harnad, M. Perroud,® and P. Winternitz

Centre de Recherches Mathématiques, Université de Montréal, Montréal H3C 3J7, Canada

This work is concerned with the characterization of tensor fields in (compactified) Minkowski space which
are invariant under the action of subgroups of the conformal group. The general method for determining
all invariant fields under the smooth action of a Lie group G on a manifold M is given, both in global
and in local form. The maximal subgroups of the conformal group are divided into conjugacy classes under
the Poincaré group and the most general fields of 1-forms, 2-forms, symmetric (0,2) tensors and scalar
densities which are invariant under representatives of each class (as well as certain other subgroups) are
then determined. The results are then discussed from the viewpoint of physical interpretation (as, e.g.,
electromagnetic fields, metric tensors, etc.) and applicability; in particular, for studies of spontaneously

or otherwise broken conformal invariance.

I. INTRODUCTION

Statement of the problem

In this paper we concern ourselves with the problem
of determining the most general types of tensor fields
on the space—time manifold which are invariant under
subgroups of the conformal group. We shall obtain a
complete solution of this problem for the following types
of fields and groups: 1-forms, 2- forms, symmetric
(0, 2) tensors and scalar densities invariant under the
maximal subgroups of the conformal group, as well as
under certain other subgroups of interest in physics.
Such fields may be identified, for example, as electro-
magnetic potentials and fields, metric tensors, etc.
The particular model for the space—time manifold that
is used is the conformally compactified Minkowski
space M, upon which the conformal group acts as a
global transformation group. This is a compact, in-
finitely connected manifold which possesses the same
local structure as Minkowski space, That is, it admits
a local (infinitesimal) causal orientation and therefore
a pseudo-Riemannian metric of signature (1,3). How-
ever M does not possess a global causal structure since
there exists within this space an infinity of closed, time-
like geodesics, and hence it is not quite an adequate
model for the space—time of relativistic physics. This
difficulty may be satisfactorally resolved~? by replac-
ing M by its noncompact, simply connected covering
space M and, correspondingly, the conformal group
with its universal covering group. Since such a replace-
ment has no effect upon the invariance properties of

gyupported in part by the National Research Council of Canada,
Le Ministdre de I'Education du Gouvernement du Québec, and
a NATO research grant.

b Permanent address: Institut de Physique au Sart Tilman,
B-4000 Lidge 1, Belgium.

After Aug. 1, 1977: Départment de Mathématiques, Ecole
Polytechnique, Montreal.

2126 J. Math. Phys. 19(10), October 1978

0022-2488/78/1910-2126$1.00

tensor fields, except insofar as relating the fields de-
fined on different sheets of M, we shall make no use of
it.

1. Background

The conformal group as a local transformation group
in Minkowski space has long been known in physics as
the invariance group for Maxwell’s equations, *® and
more generally, for a wide variety of other field equa-
tions®™? (particularly those describing massless parti-
cles). Since it contains the invariance group of special
relativity; that is, the Poincaré or inhomogeneous
Lorentz group, it has often been suggested that the
conformal group might have an equally basic interpre-
tation as fundamental symmetry group for the geometry
of space—time and the equations defined in it. In par-
ticular, considerable study has been made of the im-
plications of conformal invariance in quantum field
theory, %! primarily motivated by attempts to interpret
the approximate scaling invariance found experimen-
tally in high energy scattering of elementary particlesc.1
Apart from this, conformal invariance of field equa-
tions is a property shared by most models for the uni-
fied gauge field theories of weak, electromagnetic, and
strong interactions, '¥1* due to the fact that the fields
involved (prior to renormalization) are all massless.

In this context, particle masses are introduced through
spontaneous breaking of the gauge symmetry which also
leads to breaking of the conformal invariance at the
level of solutions to the field equations, !*~'% Solutions
which minimize the total energy represent the classical
analog of the quantum ground state, and the largest sub-
group of the invariance group of the field equations
which also leaves invariant these solutions will play the
role of the fundamental symmetry group for the physical
system. If for reasons of stability, either due to the
type of interaction involved!® or to the topological prop-
erties of space—time implied by the solutions, 2%~%2

this ground state possesses less symmetry than the
dynamical equations, we necessarily have a spontan-
eously broken symmetry. At the level of space—time

2
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symmetries it is therefore quite basic to ask which
solutions to conformally invariant equations are them-
selves invariant under large subgroups of the conformal
group, Certain particular cases of this question have
been studied in the literature. For example, the “one
instanton” solution for the SU(2) gauge theory is known
to be completely characterized by its property of in-
variance under the O(5) subgroup of the conformal group
0(5, 1) for Euclidean space—time. ! Similarly, for the
x¢* (scalar density) field theory, solutions invariant
under O(3, 2) have been studied as a model for introduc-
ing a fundamental scale of length, thereby spontaneously
breaking the O(4, 2) invariance of the field equations, !’

In general relativity, conformal transformations
also play a central role, several of the known cosmo-
logical models having the property of conformal flat-
ness; that is, differing from a flat space by a conformal
change of metric. The symmetry groups of some of
these models [e. g., O(4,1) or O(3,2) for the de Sitter
spaces] moreover, are maximal subgroups of the con-
formal group. Alternative models for explaining cosmo-
logical data, such as the chronometric theory! of Segal,
formulated in the space M, have also put particular
emphasis on the underlying conformal invariance prop-
erties of space—time. The conformal group has further-
more been studied as a gauge group for field theories
formulated in a non-Riemannian geometry, in which it
plays a role analogous to that of the Lorentz group in
general relativity. 2°

The subalgebras of the conformal Lie algebra have
been studied recently as part of a general program for
subalgebra structure analysis.?* All the maximal sub-
algebras have been identified, up to conjugacy under
the group, 2% and their subalgebra structures, in turn,
have been determined completely, 2~27 These, and other
subalgebra analyses have been applied in particular to
the classification of symmetry breaking interactions in
the Serddinger equation®®?® as well as to other prob-
lems of interest in physics. The electromagnetic fields
invariant under certain subgroups of the Poincaré
group have been studied systematically with methods
similar to those developed in the present work, 30~3%

2. Outline of development

The present work is divided into several distinct parts
and may be read in a variety of ways, depending upon
the interests of the reader. Sections I 3—II5 deal with
the problem of characterizing the most general tensor
field on a manifold, invariant under a transformation
group. The discussion is presented first in coordinate-
free terms, both for global and local invariance
(Sec. I 3). The relevant equations are then given in
a coordinate representation [Eqs. (4.2), (4.3), and
(4.6}]. Finally (Sec. II5) a formulation in terms of
fibre bundles is given which makes precise certain
notions used in Sec. 1I4. The following Secs. ITI 6—III 8
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introduce all the definitions and notations needed with
regard to the conformal group, realized successively
as: a local transformation group in Minkowski space;

a global transformation group in conformally compacti-
fied Minkowski space; the group O(4, 2)/Z,, acting in a
six-dimensional real space; and the group SU(2, 2)/Z,
acting in a four complex dimensional space, In

Secs. IV9—IV 11 the maximal subgroups of the con-
formal group are divided into conjugacy classes under
the Poincaré group. The reason for doing this is the
following, When obtaining the most general invariant
field under a given group, we may naturally generate
an infinity of other fields by applying Poincaré trans-
formations, and each of these fields will be invariant
under the group obtained from the original invariance
group through conjugation by the corresponding trans-
formation., However, such fields will not be essentially
different from one another in terms of interpretation
since, by virtue of the duality between point and co-
ordinate transformations, they may be interpreted as
the same field viewed in different Lorentz frames,
Therefore, it is sufficient to determine the invariant
fields corresponding to a single representative of each
conjugacy class of groups under the Poincaré group.
Such an argument holds, of course, for any invariant
quantity under a given group, making the conjugacy
classes under the Poincaré group the only relevant
characterization from the point of view of relativistic
invariance. An essential distinction must be made,
however, between the restvicted Poincaré group, pre-
serving orientation and causal sequence, and the general
Poincaré group, containing the transformation P (space
inversion), T (time inversion), and PT. Equivalence
of reference frames under the latter represents an
additional physical assumption, beyond that of relativis-
tic invariance, whose validity depends upon the nature
of the dynamical equations involved. With regard to the
general problem of determining classes of subgroups,
conjugated under a particular subgroup, a formulation
is given in Sec, IV11 in terms of double cosets which
leads to two possible approaches to such an analysis.
Both these methods are illustrated for the particular
cases of maximal subgroups of the conformal group and
the results are summarized in Table I. In Secs. V12—
V 14, the methods of Secs. II3—II5 are applied with
respect to these maximal subgroups (as well as certain
nonmaximal ones) so as to obtain the most general in-
variant fields of 1- forms, 2- forms, (0,2) symmetric
tensors, and scalar densities. The cases for which
nonzero invariant fields exist are also indicated in
Table I, Finally, the results are discussed in Sec., V15
from the viewpoint of physical interpretation and a sum-
mary is given in which possible applications and exten-
sions are suggested.

General references: For differential geometric
definitions and notations, as used in Secs. II 3—II5,
we recommend the standard texts of Refs. 34—37 to
the reader. For further background and references on
the conformal group, see Refs. 1, and 38—40, For a
summary regarding nonlinear group action on manifolds,
see Ref. 41 and for more detailed mathematical back-
ground, Refs, 42—44,
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TABLE 1. Maximal Subalgebras of ¢(3,1).

Algebra — el a
N OIRS
X Normalizer Invariant Transition Orbit in Basis gl § B §
dim #) N(¥) Subspace Element C® under for E] g |® g
[rnn]  inO@4,2) V. g, ViV, NAF) H, A{FIiG |4
sim(3,1)  SIM(3,)XZ, V.{(0,0,0,0,— x.x)} [ n#=0, 7*+7’=0 {L,K.D,P,}
an V= (0000x0] e T(P-C) ) g0 \L,K.D.C,]
(OO [] V;={X,0,0,—-X,0,0)} CXP(T#(PO“P Co) ) Vq?&os 7]‘+7fs:0 {L1»K13L2+K19LI‘K23
Xexp(l;— (PX—C‘) ) PthPD_P}’ChCZvCO_C)}
odl)  O@4,1)XZ, V,{(x,0,0,0,0,0)} I ni+niin? {D,L,P,C, ViV
+75—73=0
(10)
f1o0] V.= ({0,000, et? 7} 475+ {L.K,e'P, ~e "C,] ViV
x sinh4,x coshd)} Xexp({-(l’oﬂ—c«:) ) +i—mi=e™
o(32)  OGB2XZ V,={(0,00x00)] 7 7i-ni-7yl {K1,K2,Ly,D\P,, vViv
—715 +77§ =0 PthvaCI)CZ}
(10)
[010] ¥,={(0,0,0,0, P ni-gi-ni-n} (LK e'P,+e "C,) vViv
X coshA,x sinhA)} Xexp(—ir—(P,—C;)) +pi=e
opt(3,1)  OPT(3,1)XZ, V,={(x,00, ! PP =1+ {DL.KL.+K,,
wx,—y,y)] _77)—-_‘172_0 Ll_‘KZ:P‘nCO_C!}
(10
002 V= {(x,0,0,—x,p,p)} exp(% (P,—C) ) 7+ FA0 {D,L, KL+ K,
or 7'+ 7’50 L —K,C,.P—P}
su2.1) E(Uﬁ%)i"—“l)— V= [(0.000)] I ¢ (LyD—KnPyt CoPort P,
ou(l)y  XZ, Co—CrK i+ 4G,
KZ _P! _ChLl _'Pl +Ch
ZLJ —P2+Cll
(&) @ {2L,+ Po— P+ Co— Gy}
[019]
o(2) O()x04) " ={(x0000m) ) (ma+n3
®0o(4) =pt+nisyitni=0n
@) A=0 =0
[200] Vi) ? ni+ni {Lie*P,—e”"C)) v ARV,
={(x,0,0,0xsinhA, =m 4 +m+m=e®  ofetPote T Gl
x coshA)}
o(2) 0OR2)x 0(2,2) V,={(0,x,5,0,0,0)} 1 7i+7m3 {K:,D.P,,Co, P,,C, ] v ‘204
®0(2,2) =qi—ni-nitni= @ [L.}
) Vi (00,05, eep(TL)  giend (Ko KoLyt Pyte™ *Co, v ViV
x coshd,xsinhA)} Xexp(— %(P1 ~Cl)) =n2—ni-nitni=e? e‘Pi+e M Cue’ Pt e tCY
[020] @etP—e 1 Ci}
o(3) 0o3)x0(2,1) Vi={(0xyz00)} I 7i+n3+93 {LuLaLs) ® {D,Po,Co) vViviv
2
#o,1) =nE-ni+ni=0
0] V,={(0x,p.0, P ni-+n3+n3 {Kne'Pot e CuePs AR
z coshd,z sinhA)} xexp(— %(P;—Cs)) =ni-gitypi=e® +e ACle (L, e?Pi—e1Cy
[030] e*P—e MGy}
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TABLE 1. Maximal Subalgebras of ¢(3,1).

|

P=lnlgale
Algebra o i e e ES) 8
x Normalizer Invariant Transition Orbit in Basis 3 1 3 gl 2
( C unde for 1§ 3
(dim %) NAF) Subspace Element under or ; 5
[n.nn)]  inO4,2) V: g V-V, NAH) H 4] F G {
T § 1
o(2,1) O DXO0Q,DXZ,  Vi={(xpz000)} 1 Bo=1m=1,=0, 770 [K1KoLs} & {D,P;,C} v vy
®0(2,1) or 7, =n=1.=0, 7,70
i
©) (see text)
[120} V,={(0,2,0, L ntm—ni=zte®, {2K,—P,—Cy,2K,— 2D+ P,—C, ViV v
x sinhA.x coshi)} Xexp(%(PwCo) ) w—m—n =+ —P,—C 2L, — P+ Gy} i
o
@ (2K, + P, +C,2K,~2D—P, Lo
+C0+P!+C\‘2L2“P1+Cl‘ ( g
:
v={(Z=vo. ep(- T(h-C) ) nitnionis0 90 (KuePme G VARVARY,
\/2 8 [ \ ¢ i
o
z z x T 2 2 2 a4 ! ) ! 1
—_— = XCXp(—L-) To~M —7:=0, 770 e'P—e"Cy} i .
V2 V2 \/2)] 2 | !
Xexp(— L+ ) o [L,e'P+e C, 1 [
APye=Cy) o
|
. f - *
3. Coordinate independent formulation Ty @ (pe)=d(py), ¥ goe Gy (3.2)

We address ourselves now to the following problem,
Given a C® manifold M of dimension » and a transforma-
tion group G acting on M by C” diffeomorphisms (i. e.,
we have a homomorphism f: G- Diff(M) into the group
of C* diffeomorphisms of M), determine the most gen-
eral e D' (M) (element of the module of s-covariant
7-contravariant tensor fields on M) such that f*(y) =9
for all g€ G [where f* is the mapping D' (M1)
—D'**)(M) induced by the differential of f,]. In fact,
it is sufficient to consider tensor fields of definite
symmetry under permutation of indices, since the sub-
modules of a given permutation symmetry are invariant
under Diff(M). We may also extend the class of in-
variant fields considered to include tensor densities.
The requirement of invariance may be weakened to
that of invariance under groups of local diffeomorphisms
defined only in a neighborhood of each point. If the
group G is a Lie group, this becomes equivalent to the
condition that the Lie derivative of ¢ with respect to
the vector fields X induced by the one-parameter sub-
groups of G should vanish,

-1
(L, ¥),=lim ([¢ ft W”) =0, 8.1)

?

where X(p) is the tangent vector at p € M to the curve
Jeer(P) generated by the one-parameter subgroup g(t).

Now.let M, be the orbit of a point p, under the group
action and let G, be the isotropy subgroup of G at p,
li.e., Gy={g | fa(py) =potl. Then for gy= G,, f¥ maps
the tensor space D'7*®(p,) into itself linearly, and
defines a representation of G, on this space which is a
(reduced) tensor product of the linear isotropy repre-
sentation 7 times with itself and s times with its con-
jugate representation. Clearly, for the field to be
invariant under G, it must satisfy in particular, at
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which represents a set of linear algebraic equations for
each g,. Now, given a tensor ¥(p) at p, which satisfies
(3.2), we may generate an invariant tensor field on M,
by defining

(b)) =X (po)). (3.3)

Because of (3.2), this mapping depends only on the left
Gy coset to which g belongs and hence ¥{(p), p<c M,
really only depends on the point p and not the particular
element g in the coset which maps p, to p. Conversely,
any invariant tensor field on M, is uniquely determined
by its value at p, through Eq. (3.3). The particular
point p, chosen is evidently immaterial due to the
transitivity of the group action on the orbit, the isotropy
group of any other point on a given orbit being conjugate
to Gy and the corresponding linear isotropy representa-
tion equivalent. The above remarks may be summarized
as follows:

There is a one-to-one correspondence between the
irreducible tensor fields ¢ of type (r,s) on M,, in-
variant under G, and the GL{(n}-irreducible tensors ¥,
of the same permutation symmetry type as Y, invariant
under the linear isotropy tensor representation at a
fixed pgc My realized in the D*'(py) tensor space;
the correspondence being given by Egs. (3.2), (3.3)
with ¥(py) identified as ¥,.

Suppose now that G is a Lie group and that the
mapping GX M — M defined by (g,p) —f.(p) is C*. We
shall assume, moreover that M has an everywhere
dense submanifold M’, which is the un. n of a finite
number of submanifolds {Mi} each of which is an open
stratum®® (that is, each M; is the union of all orbits
with conjugate isotropy subgroups). We shall refer to
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such M;’s as the regular strata (and the orbits they
contain as regular orbits) and all others as singular
strata (and singular orbits). It will be assumed that
either Af; consists of a finite number of orbits or that
the space of regular orbits G\M; is itself a differen-
tiable manifold under the differentiable structure in-
herited from A, and G. In the former case, the identi-
fication of invariant fields is complete when they are
known on each orbit, while in the latter we may use the
manifold structure of G\M; to characterize the invariant
fields throughout each M;. A local coordinate system
for G\Mi is equivalent to a functionally coraplete set of
scalar fields defined on the orbit of an open set Uy, C M,
invariant under the group G. To see this, let % be the
dimension of G\M; and let

B:U—~T (GUy=UcG\M,;, UCIR¥ (3.4)
be such a local coordinate system (U, U, and U being
open neighborhoods). Then

B(p)=B(Gp) (3.5)

defines a k-tuple {3°} (a=1,..., k) of functionally in-
dependent G-invariant scalar fields. Furthermore, if

n:GU—~IR {3.6)

is a G-invariant scalar field on GU; (considered now as
an open set in M,), define the map:

n:U--1R (3.7
(considering U as on open set in G\M,.) by
n(Gp) =1 (p). (3.8)

Then 7=74°8, where ny=n08"! is a mapping from U
into IR, and hence 7 is functionally dependent on the

{Bel.

4. Coordinate systems

Given a k-tuple {F*} of G-invariant functionally in-
dependent scalar fields defined on GUyC M;, a coordi-~
nate system for M; in this open set may be defined as
follows. Let S be a submanifold of M; which locally
intersects each orbit in GU, exactly once and more-
over such that the isotropy subgroup G, for each point
Pos € SN GUy is locally the same, (For further discus-
sion concerning the existence of such an S, see the next
section.) Now the space of cosets K =G/G, may be
identified with each orbit in GU, in a unigue way by the
correspondence

&bus ~ &Gy

A coordinate system for K thus provides a coordinate
system for the orbit of any point po,. The orbit is neces-
sarily of dimension n - k and therefore such a coordi-
nate system is a mapping
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c K — TRNE
@ Ky ~IR™

where {KA} is an open covering of K. This covering
may be used to defined a covering for GU,C M; by open
neighborhoods U,

Ups= PIBJ K al{posh
S

Then a natural coordinate system for A, in GU, is given
by the mapping ¥ : GUy —IR" defined as

A p=kpn) ={0% 09, B (Mg cors 9= Uy

ceng

where ks K, C K, Thus, the first 2~k coordinates
identify the point in the coset corresponding to the given
point on the orbit G, while the last k coordinates iden-
tify the orbit upon which py, lies. If the invariant scalar
fields {8’} are defined and functionally independent
throughout M;, this may be used to defined a coordi-
nate system throughout M;,

In general, let {x*{p)} denote the coordinates of a
point p M; in any coordinate system and let xj,(p)
=x*(f,(p)) denote the coordinates of the image of this
under the mapping f, for a given g= G. The Jacobian
of this map, referred to these coordinates, is repre-
sented by the n X% matrix J(p) with element

i) = 2P @.1)
ax’

Let the components of the tensor ¢ relative to the co-
ordinate frame be denoted ¥;!'""}". Then the conditions
for invariance (3.2) and (3. 3} become

igeeei = €078 L F0 iy 0TI, BT Ls yR1eek
lpjl"'j;(p‘l)'ki.@k Iry Tey it sts%i-“l;(m)
r
Iyeeclg
(Vg=Gy)  (4.2)

and

igened = ., e rirag i, T s Rtk
w,.l...j;(fg(po))-kia ETgl e T T e 8T, 0 ()
r
ll°°°’s

(wg=G) 4.3)

(where ¢J represents the inverse of the Jacobian
matrix), Thus, the most general invariant field ¢ is
obtained by solving (4. 2) for the independent compo-
nents of P(py), allowing these to be arbitrary functions
of the scalars B%(p,) characterizing the orbits and then
applying (4.3) to generate the field throughout the orbit.
The above expressions become considerably simpler
within the {a“, B?! coordinate system, since the Jacobian
matrix then takes on the block form

i
Aspl O
J = ---—-ll—--—- (4.4)
04 1,
If invariant tensor densities are being considered,
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rather than tensors, Eqs. (4.2) and (4.3) are modified
by multiplying the right-hand side by a suitable power
of ldet(J)i, depending upon the density weight. In
particular, for a scalar density ¢ of weight 6, we have

& (po) = |det** T |° d(po), o< Gy (4.2
and

o(p)=|det*T|® 6 (py), g= G, gpo=p. (4.3

Finally, let g{f) be a one-parameter Lie group which

induces the vector field X, denoted in the coordinate

system {x’} by
;0

(=t — ., 4.5

X=t =5 (4.5)

The requirement (3. 1) for local invariance of the field
P is expressed in terms of components as

igoeei, oy f10vti, SN e g iLetciy
(wa)jl.o-js— & J/jl...jsk + ZJ ‘jp‘])jl.-.jp_l,k,jp+1...js

p=1
>_"\ ip ,‘1...,'0 1'kvip+1’°°ir
—_— _Jl E B d)jl""js
b=

=0. (4.6)

Again, for tensor densities, a suitable multiple of
ek,kw}i,:j}'s must be added to the expression for the Lie

derivative.

B. Fibre bundie formulation

In terms of fibre bundles, the preceding structures
may be described as follows. Let M; denote the ith
stratum. Then the action of G on M; defines an equiva-
lence relation turning M; into a fibre bundle over the
base manifold G\Ml- with group G, the fibres being the
orbits, and the fibre-type, the coset space K =G/G,.
An open subset of the submanifold S intersecting each
orbit once represents a local cross section of this
bundle which is invariant under G;. Such cross sections
may be shown to exist, in particular, if G, is com-
pact, =3 and under weaker assumptions as well, such
as the existence of a Gy-invariant local metric. For
the cases treated in Sec. V either G\ M, is discrete or
a smooth local section exists. A coordinate system for
G\ M; defined on any covering by open sets {V,} to-
gether with a G, invariant local section S, over each
V4 and a coordinate system in K gives rise to a coordi-
nate system for M; through the identification of the
identity coset with the intersection of S, with each fibre
over V, (the open covering being {KBSA(VA)}, where
{Kg} is the covering by open sets of K).

An invariant tensor field ¢ is a cross section of the
bundle 7 "+**(M,)/G over G\M; as base manifold,
7 “+$)(M,) being the bundle of (», s)-tensors on M;, and
the G-action on 7 "**’(M;) defined by ¢¥. Each point
in 7% (M,)/G over a point x € G\M; corresponds to a
G-invariant tensor field defined on the orbit x, and
these are completely characterized by the Egs. (3.2)
and (3.3). Thus, the problem of finding the most gen-
eral tensor field ¥ of type (7, s), invariant under G is
reduced to that of characterizing the sections of the
bundle 7("5)(M,~)/G. Locally this may be done by speci-
fying the coordinates of a point x € G\ M, and the com-
ponents of the (7, s)-tensor {satisfying the linear
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isotropy condition (3.2)] which lies over x. A coordi-
nate system for G\ M, is a C*, 1—1 onto mapping be-
tween open sets {V,} covering G\ M; and {U,} in R*.
This may also be interpreted as a set of local cross
sections over {V,} of the bundle G\ M; XIR", each defin-
ing a set of k functionally independent, local G-invariant
scalar fields in ;. That they are functionally indepen-
dent follows from the fact that the Jacobians of the C*
maps V, —IR® are nondegenerate; that % is moreover
the maximum number is evident from the fact that the
Jacobian’s rank cannot exceed the dimension of G\M,-.

Hi. THE CONFORMAL GROUP OF MINKOWSKI
SPACE

6. The local transformation group

Let M(p, q) be a pseudo-Euclidean space with metric
gy of signature (p, ¢). That is, within any rectilinear
coordinate system ¥, : M(p, q) ~R**?, gy is identified
with a nondegenerate bilinear form

g R\TIXR?Y =R,
Unless stated otherwise, we shall always identify g,
with the diagonal matrix

diag(l,...,1,-1,...,~1),

O gl

q p

using the same symbol for both. By O(p, ¢), we shall
mean the orthogonal group corresponding to this particu-
lar gy. A C” transformation T : U, ~ M(p, g) [Up being
an open set in M(p, q)] is called a local conformal trans-
formation if, for any xc Up, the Jacobian matrix J of
the transformation within the coordinate system 7, is

of the form

J(x) = f(x) R(x), {6.1)

where R(x) e O(p, ¢) and f(x) € R* (multiplicative group
of positive real numbers). This is equivalent to the
requirement that

T* gy (x) = M) g,y (x), (6.2)

where gy in this equation simply denotes the metric
tensor, and not any particular coordinate representation
of it. If the open set Uy is all of M(p, q), then T is a
global conformal transformation. The definition (6. 2)
applies, moreover, both in local and in global form

if M(p, q) is replaced by an arbitrary (pseudo)-
Riemannian manifold. It is a well-known result that
for p + ¢ =3, the conformal transformations of M(p, q)
are generated by translations, pseudo-orthogonal
transformations, dilatations and the inversion

X — X/gu(xX, x). These generate a local Lie group C(p, ¢
of transformations on M(p, q) [local, because the open
sets Ur for certain T e C(p, ¢) do not cover the whole
space].

Mx) e R,

For (p,q)=(3,1), M{p, ) becomes Minkowski space
(denoted hereafter as M), for which Klein*® proved that
C(3, 1) is isomorphic to the projective orthogonal group
PO(4, 2) ~O(4, 2)/Z,, where Z, denotes the centre {1, ~ 1}
of O(4, 2). Klein’s proof is based on the sphere geom-
etry of Lie which allows the local action of C(3, 1) on
M to be extended to a global action on another manifold,
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having the same local properties as M; namely, the
conformally compactified Minkowski space M, which
we shall define in the next section.

The one parameter subgroups of C(3, 1) induce a set
of vector fields on M which close under commutation
to form a 15-dimensional Lie algebra (4, 1). A basis for
¢(3, 1) which is convenient for distinguishing the Lorentz
subalgebra consists of the infinitesimal homogeneous
Lorentz transformations M, ,, translations P,, dilata-
tions D and special conformal transformation C,
(1 =0,1,2,3). Within a Cartesian coordinate system
these are of the form:

Aluv:"xu av +xual-l,
Pu == 0y, D:x‘uau,
C, =x*3, - 2x,%°9,

(6.3)

{summation convention used throughout, and raising or
lowering of indices done with the Minkowski metric
gy=diag(1l,-1,~1,-1)]. Now, denoting an arbitrary
vector field X € C(3, 1) with components given by

X=3w""M,,+pD +a"P, +c"C, (6.4)
corresponding to the infinitesimal transformation

P SR S G L D RN VR s 1y Tl (6.5)
(", p, a*, ¢ being real constants), we have

Lygu=201=2c"x) gy (8. 6)

showing explicitly that these vector fields represent
infinitesimal conformal transformations. The nonzero
commutators within this basis are:

Muss Moy 1= 0o Myr + e Mg = Sur Mg ~ 2,M .,
(M, ., Po)=8u6 P, ~ 8o Py,

[D,P,]=-P,,

[p,C,]=Cy,

(M,,,Col=8u0C, = s Cu,

[Pu: C,l=2g,,D+2M,,.

6.7

At the algebraic level, the o(4, 2) structure may be seen
by defining a new basis J, =-J,, (¢,6=0,1,2,3,4,5)
with

Jy,=M,,, dg=D, Jy, =3P, ~C,), J5, =3P, +C,)

(6.8)
in terms of which the commutation relations become
oy Tea 1 = 8ac Toa + 804V ac = 8at Iy = &he Tt » (6.9)
where
g =diag(+1,-1,-1,-1,-1,+1), (6.10)

Another basis frequently used is obtained by separating
M, into rotations L; and boosts K; (i=1, 2, 3)

Li=-zuM,, K;=M,. (6.11)
7. Compactified Minkowski space

In order to realize C(3,1) as a global transformation
group, we proceed in a standard way,1 replacing M by
another manifold M defined to be the projective cone of
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RS,

M=C?/~,
where C® is the cone of nonzero null vectors for the
quadratic form associated with the matrix (g,,); that is
the set of points 1= 0" 7!, n%, »%, %, n*, *) e R® for
which

ni-m-ni-n-nt+ni=0 (7.1)

[where (09,01, M2, 03,4, 15) = 0°, = 0*, =%, ~ 1, = n*, ")),
The equivalence relation ~ is defined by

n~n'<=-n"=xn, X+#0, (7.2)

This gives an identification between points in M and
rays on the cone C°.

The action of O(4,2) on M is the natural one induced
by tkz linear action of O(4,2) on RS,

g [77] - [g‘ﬂ],

where (] is the class of points on C® equivalent to 7.
This action is transitive but not effective, since the
center 2, :{l, — 1} acts as the identity at all points of
M. The projective orthogonal group PO(4, 2) =04, 2)/7Z,
acts effectively and the isotropy group at any point in
M is easily seen to be an 11-dimensional Lie group
which is isomorphic to the similitude group SIM(3, 1);
that is, the semidirect product of the inhomogeneous
Lorentz group P(3, 1) (Poincaré group) with the group
IR' of dilatations. Choosing the point [(0,0,0,0,~1,1)],
the isotropy group may be characterized as the set of
all matrices which can be written as a product

g((l, X,L)Eexp(aupu) exp()‘D)gL, (7-3)
where .
1 Looa a
________ fmm e
expla“P,)=| a"g, | 1+id id , (1.4a)
—a%g, | —td 1-1d
]
i, 'l 0 0
- e - — - n -
expD)= | ¢ ! coshh sinhn | 7 (7. 4b)
0 + sinhA coshA
1
and
|
Li 00
R S
gL = 0 i 10 ’ (7.4¢)
i
0 ! 01

where Le O(3, 1), ac R! with components ¢* and
a*b=a"g,b for any a,be IR! considered as column
vectors. This may readily be verified to define a six-
dimensional representation of the similitude group.
We may thus identify 47 with the homogeneous space
PO(4, 2)/SIM(3, 1).

From (7.3) and (7.4) we see that P(3,1) acts on the
cone C® as follows:

n Ln+ @ +n)a

expla“P)g, | n'| — | nt+a-Ln+id@*+n’) | (1.5)

nﬁJ n° —a*Ln -3 (@' +1°)
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[where n=®")e R!].

The orbit of the point (0,0,0,0,1, 1) in C° under
P(3,1) is thus the four-dimensional submanifold of
points with coordinates

2a
1+ad
1-at
This allows us to identify the orbit with Minkowski
space M through the injection mapping
X
s1+aY) | .
3(1=4%)
The image j[M] is then the set of all (1,7, 7°) for which
n*+7n° =1. The injection of M into M is given by
jrxr[ik)]

and the image consists of the submanifold of rays [n]
for which n* +7° #0. The local inverse j*![] ~ M defines
a coordinate system corresponding to the Cartesian
coordinates {x*} of M,

(7.6)

nu

¥E—g1—5.
7+

The entire manifold # may be seen to be diffeomorphic
to the projective space [S!xS%]/2, by introducing the

projective coordinates

= n _
uazw (a—O,...,5)

which maps M diffeomorphically into $!x$%/Z, since
(7.9)

and the points {#°} and {- »*} must be identified to make
the correspondence one—one. The set of points of M
which are not the image of any point in M are just those
for which «* +4° =0, so that

ud -} —uf —ud =0,

(7.7

7.8)

drul=ut+ul+ud +ul=1

(7.10)

This may be identified as a light-cone “at infinity”
(i. e., ' —-uo).

The action of SIM(3, 1) defined by the mapping j is
exactly that of the similitude group on M; namely

(7.11)

The Abelian subgroup of PO(4, 2) consisting of elements
of the form

gla,\, L) :x +exp(« ) Lx +a.

AL
gb)=| -b7g, | 1+36 -3’ (1.12)
-bTgy 1 3 1-4p?
moreover, defines t};e “special conformal
transformations”
B . N (1.12)

These latter are clearly not defined globally on M,
The isotropy subgroups of O(4, 2) acting on C? are all
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conjugate to P(3, 1) and therefore we have the
identification
C*~0(4,2)/P(3,1). (7.13)

Finally, we should like to distinguish between the
different connected components of the conformal group
in a manner analogous to that done for the Lorentz
group®; namely, according to which, among certain
discrete transformations, each component contains,

It is known that O(4, 2) as a manifold has four connected

components [as does each Ofp, ¢) group for which

£,4> 0], and that these may be distinguished according

to the values of two multiplicative discrete characters, 2

namely the determinant d (== 1) and the spinor norm

n (=x1). The latter may be defined as

Gop Gos

Gso Gss

for any O(4, 2) element (G,,). We thus have
Z,=0(4,2)/50,(4, 2), (7.14)

where the four cosets in Z;, may be identified with the
following four elements of C(3, 1)~0(4, 2)/Z,,

I=€dia’g(151;1!111:1) (n=+1,d=+1),

P=ediag(l,-1,~1,-1,1,1) h=+1,d=-1),

7.15
T=ediag(-1,1,1,1,1,1,) (n==1,d=~1), (1. 15)

PT=ediag(-1,~1,-1,-1,1,1) (e==~1,d=2%1)
(e:::i: 1).

[Note that the center Z, of O(4, 2) is not contained in
Z,, but is contained in SO,(4, 2). ] Using notation which
is standard for the Lorentz group, we may identify the
components of C(3,1) according to which components
of the Lorentz group® they contain:

C.(3,1)~S0,(4,2)/Z,> L' D1,
C.(3,1)> LD PT,
C!(3,1)DLIDP,
ci3,1)oLi>T,

Correspondingly, we have the following five types of
conformal groups:

(i) C(3,1)~0(4,2)/; (general conformal group)
(ii) C.(3,1)~S0,(4,2)/Z, (restricted conformal group)

(iii) C.(3,1)~S0,2)/Z,~C,U C! (proper conformal
group)

(iv) C'(3,1)~C.u C! (orthochronous conformal group)

6

sgn det

(7.16)

(v) Cy3,1)~C,uC. (orthochorous conformal group)

8. The conformal group and SU (2,2)

In4 the following, we shall need an explicit construc-

tion*’ of the isomorphism
sU(2, 2)/Z, ~ 80,4, 2), (8.1)
where Z, ={: 1}, or, equivalently
SU(2,2)/Z,~S04(4,2)/Z,~C(3, 1), (8.2)

where E; ={+ 1,271} is the discrete center of SU(2, 2),
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Let i =h' denote a Hermitian form of signature (2, 2)
on €. Then SU(2,2) is the group of complex 4x4
matrices U such that

UhU="h, detU=1, (8.3)

1 can always be chosen such that % =1 [and consequent-
ly, he SU(2,2)] and we choose

h= . (8.4)
-1

Let p(U) be the six complex dimensional, linear repre-

sentation of SU(2, 2) on the space A*@! of bivectors

(i. e., antisymmetric tensor product of €* with itself),
defined by

pU):vynwy — Uoy AU, vy, v.e QL (8.5)
Now let us define the following symmetric form on
AR,

(’Ui Avg, Dg A '04) = det(m, Vg, Us, ’1’4) (8. 6)

{(which extends, through bilinearity, to any pair of bi-
vectors). Since for each A= GL(4,®) we have

det(Avy, Avy, Avg, Ap,) = detA - det(vy, vy, 13, )

and since detU =1 for U< SU(2, 2), the symmetric form
is invariant under p(U),

Y 1o Ay, plUYs ey nuy) =0y A by, 034 1) 8.7

and this invariance property defines a homomorphism
of SU(2, 2) into 50,(6, ) {which incidently can be trivial-

1y extended to a homomorphism of SL{4, ) into SO(6, ©)1.

Moreover, the representation p is virtually real; that
is, the complex vector space AZ(E“, considered as a
twelve-dimensional real space, contains a six-dimen-
sional linear subspace invariant under p(U) and such
that the restriction of (8.6) is a real bilinear form of
signature (4,2). This gives rise to the homomorphism
of SU(2,2) onto SO,(4, 2).

To exhibit this decomposition explicity, it is conven-
ient to represent A*C* by the space 7 of all antisym-
metric 4X4 matrices T =~ T7. The representation p
acts on T as

U)YT=UTUT (8.8)
and the symmetric form becomes
(T, T") =263, T35 Thy =~ tr(+ TT"), (8.9)

where €, 1s the Levi—Civita symbol and *T denotes
the (affine) dual of 7,

(*T)“:ée“k,’l‘k, . (8.10)
We note that

*(p(U) T)=p(U-1T)*x T (8.11)
and

w»T =T, (8. 12)

Consider now the involutive, antilinear transformation
D on L defined by

DT =p(h)* T (8.13)
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(where T denotes the complex conjugate of 7). The fact
that D is involutive {(D* =1) follows from (8.11) and
(8.12) and the relations

W=nT=n=h". (8.14)
The set of matrices invariant under D,
T,={T= 7|DT =T} (8. 15)

is a real vector space of dimension six which is in-
variant under p(U) since

p(U)°D=D-p(U). (8.16)
Within 7,, we have
xT=hpTh, ¥YT=7p (8.117)

and therefore the restriction of the form (8.6) to 7,

becomes
(T, TY=—tr(WTHT). (8.18)

By direct computation, one verifies that 7, consisis of
all matrices of the form

0 p q 7
- 0 —_ o

T= _Iq) > OT g‘ 3 [J,(],?’,Eﬂj. (8.19)
~¥ =7 =P 0

Therefore, we may coordinatize Tp by points in IR®,

0 ,nO - ,Ln") - T)Z _ znl nd + ,Ln3

-0+ i 0 I R e
T(n)=. n it ot 0 0+ inf » (8.20)
—-nt—i® pt-imt - =i 0
where
n=0%n" 2" 0% 0%, ', 1°) = RE.
We then have
(T, rmM=nj-ni-nj-nd-nf+ni=@l)  6.21)

which thus defines a quadratic form in IR® of signature
(4,2). The homomorphism

¢ :8U(2, 2) ~ S04, 2) is now defined by
UT (muT =T

and it is easily verified that ker ¢ = {+ I} establishing
the isomorphism (8.1). The particular choice of co-
ordinatization in (8.20) is arbitrary up to an 0(4,2)
transformation and has been chosen so0 as to give a
simple form to the translations, homogeneous Lorentz
transformations, dilatations, and special conformal
transformations in the SU(2, 2) representation with
Hermitian form

(8.22)

~ 0 -il +
= = 8. 23
A [i i o } Snst, (8.23)
where
111 it -1
S = = (S . (8.24)
=7 L Lt } (s%)
Translations:
~ t &
= 8.25
gr [0 l] » ( )
Beckers ot al. 2134



where

k_[a°+a3 al - ia?
T lat +id*? & -a

Special conformal tvansformations:

~ t 0
8= [’E l:l ’ (8. 26)
where
0453 pl_ ip2
o e A 00 (8.27)
bl +in? -0 - b
Homogeneous Loveniz transformations:
a 0
2= [0 a"‘jl , a=SL(2,C). (8.28)
Dilatations:
~ _ [exp(=x/2)1 0 A e
&y = l: 0 exp(+A/2)1 | € IR. (8.29)

The corresponding matrices in the basis with diagonal
invariant Hermitian form % is given, of course, by
conjugation with the matrix S. Another useful realiza-
tion of the action of C,(3,1) directly on Minkowski space
may be defined using the representation (8. 23)—(8.29).
Identifying the point of M with Cartesian coordinates
{x*} by the Hermitian matrix
x= O+ xl- i cH(2)

O +in® 20—

(8. 30)

we obtain a realization of SU(2,2)/Z,~ C,(3.1) as a local
transformation group acting effectively on M~IH(2)
by®:

gixtx'=lax +d)cx+ D), {8.31)
where

~ [a b

r [E-?-a]gsu(z,m (8.32)

ghg="nh, a,b,c,d,c GL(2,T). (8.33)

Moreover, the action may be extended to a global one,1

by replacing H(2) by a space diffeomorphic to #, name-
ly the group U(2). The diffeomorphic injection 7 [cf.

Eq. (7.6)] of H(2) into U(2) is given by the Cayley
transform

1+4¢
z:xHUzl_—f;e U2), xcH(2) (8. 34)
with local inverse
iU~ x4 1-U eH(2), UcsU(2) (8.34")
1+U ? ? ‘

The “light-cone at infinity” is given precisely by the
subspace of U(2) for which the denominator in (8. 34")
is singular, that is; where det(l + U) vanishes. The
global action of SU(2, 2) on U(2) corresponding to the
local action (8.32) on H(2) is :

g: U (AU +B)(CU + D), (8. 35)
where
2135 J. Math Phys., Vol. 19, No. 10, October 1978

0 3] = H(2) (Hermitian 2X2 matrix).

A=ila+d+ilb-c)],
B=4ld-a+ilb+c)],
C=ild-a-ilb+0o)), (8. 36)
D=1%[d+a-ib~-c)l.
The C* nonsingular matrices defined by
7= [éx__:'_.gjl:t*s*ESt (8.37)
[
with
I
1-45' 0
o 1ie---- Ao =
v T (8.38)
1

define a representation of SU(2, 2) which preserves the
diagonal form h whenever g preserves k. Moreover,
these two conditions define constraints for the matrices
{A,B,C,D} and {a,b, c,d} which guarantee that (8.35)
and (8. 31) actually define transformations on H(2) and
U(2) respectively.

As a final remark concerning the isomorphism (8. 1),
note that with the choice (8.4) for the Hermitian form
h, the matrix

g 1
= e)s
although not an element of SU(2, 2}, nevertheless defines

an automorphism by conjugation since

IS ==h.

(8.39)

(8. 40)

Moreover, the homomorphism (8.22) can be extended
to the two-component group obtained by multiplying
SU(2, 2) elements by {/,J} (within this matrix represen-
tation). Applying the homomorphism to J, we find

(b(J):T)I* (7707771,7727 773)"'774’_775)- (8-41)
That is,
+ ¢(J)=PT (8.42)

and the two component group is homomorphic to
S0(4, 2).

V. MAXIMAL SUBGROUPS OF THE CONFORMAL
GROUP

9. Remark on maximal subgroups, subalgebras, and
normalizers

In the following, the notion of a “maximal” Lie sub-
group of C(3,1) is defined purely at the level of the Lie
algebra, Thus a subgroup of C(3, 1) will be referred
to as “algebraically maximal” if its Lie algebra is a
maximal subalgebra of ¢(3,1). Evidently, this will
allow the identification of several algebraically maximal
subgroups corresponding to the same algebra. As will
become apparent from the discussion of Sec. IV 11, the
relevant group, from the point of view of conjugacy
classes, is the normalizer [in C(3,1)] of any given group
or algebra. Thus, two groups with equal (or conjugate)
normalizers will have a bijective correspondence be-
tween their conjugacy classes under any given subgroup.
Therefore, we shall define a “normally maximal” sub-
group as any algebraically maximal subgroup whose
normalizer equals the normalizer of its algebra. (Note
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that the normalizer of any algebraically maximal sub-
group is always contained in the normalizer of its Lie
algebra and hence also that of any normally maximal
subgroup with the same algebra.) It is easy to verify
in particular that the identity component of any alge-
braically maximal subgroup is also normally maximal.
Furthermore, the normalizer of any maximal sub-
algebra is either a maximal subgroup or the entire
group, the latter being impossible for simple groups
such as C(3,1).

10. The maximal subalgebras of the conformal algebra

A complete classification of the subalgebras of c(3, 1)
into conjugacy classes under C(3,1) is in progress®®~";
in particular, all the maximal subalgebras of ¢(3,1) are
known. We describe here briefly how the classification
of the maximal subalgebras was made in order to char-
acterize these for use in the following sections. The
method given is applicable to any semisimple Lie
algebra,

(i) We choose a specific representation of ¢(3, 1);
namely, the one provided by the o(4, 2) Lie algebra
[Eqs. (6.7), (6.9)], defined on IR® with respect to the
symmetric, bilinear form associated with the matrix
Zo [Eq. (6.10)]. In this representation, a subalgebra
/ of ¢(3,1)~0(4,2) is called reducible if it leaves some
proper linear subspace VC R® invariant, and irreduci~
ble otherwise.

(ii) Due to the isomorphism of Eq, (7.17), the C(3,1)
conjugacy classes

(He={g g, g=C(,1)}

are identical to the O(4, 2) classes. For reducible sub-
algebras, these may be associated with O4, 2) equiva-
lence classes of vector spaces,

(10.1)

[Vle=1gV, g 0®4,2)} (10.2)
by the surjective mapping
gV ghg™. (10. 3)

In general, the correspondence is not one—one; indeed,
the kernel of the mapping is identifiable with N(#)/H ,
where H < O(4, 2) is the subgroup consisting of all ele-
ments leaving V invariant and N(/) is the normalizer
of 4 [in O(4,2)]. If /4 is a maximal subalgebra of o4, 2)
however, then N(#) is a maximal subgroup of O(4, 2)
and H a normally maximal one, both having // as Lie
algebra. For these cases Nc(#/)/H is always a finite
group and easy to determine by inspection.

The classification of the subspaces V is done by
direct application of a theorem of Witt, *® which for the
present case states that any two subspaces V and V'
of IR® are related by an O(4, 2) transformation if and
only if they have the same signature under restriction
of the quadratic form @ [Eq. (8.21)] to V and V'. Since
the induced quadratic forms on the subspaces are no
longer necessarily nondegenerate, they must be charac-
terized by three integers [n,n_n;] denoting, respective-
ly, the number of positive, negative, and null eigen-
vectors. The conjugacy classes of reducible subalgebras
may now be completely identified by the signature of the
space they leave invariant. (Of course, since the
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classes with signatures [n,n_ny] and [2 — n, - n,

4 - n_-mny,ny] are identical, we limit the range to
n.+tn, +ny<3,n_<3.) It follows from general theorems
that the following classes consist of maximal subalge-
bras: (100], [010], [001], [200], [020], [002], [120],
and [210]. All other classes of reducibly embedded sub-
algebras within this representation are nonmaximal
(e.g., any subalgebra // ¢ [101] is properly contained

in a subalgebra # < [001] because the invariance of a
subspace of signature [101] implies the invariance of
its isotropic subspace of signature [001]).

26

(iii) An irreducible subalgebra of a semisimple Lie
algebra can either be semisimple or the direct sum of
a semisimple algebra with a one-dimensional compact
Lie algebra.*® The algebra ¢(3, 1) has precisely one such
class [for the o(4, 2) representation], consisting of sub-
algebras isomorphic to su(2,1)®u(l). When conjugacy
under C(3,1) or C'(3, 1) is considered however, these
split into two inequivalent classes. Furthermore, these
are reducible in the defining representation of su(2, 2)
on the space C* with the invariant Hermitian form % of
Sec. II18. The remarks of paragraphs (i) and (ii) are
equally applicable in this representation, with the cor-
responding signatures for subspaces V< @* relating
to the induced form obtained by the restriction of 4 to
V. The two different SU(2,2) [or C}(3, 1)] conjugacy
classes of su(2,1)®u(l) subalgebras can be character-
ized by the signatures [100] and [010] of the subspaces
left invariant by the representatives of the two classes.
If / belongs to one class, the subalgebra J-4J [see
Eqs. (8.39)—(8.42)] belongs to the other one. We have
seen that this transformation induces a transformation
of SO(4,2); consequently, depending upon whether we
classify under C,(3,1) or under C,(3, 1) we have,
respectively, either one or two classes of su(2)$u(l)
subalgebras.

11. Conjugacy classes as orbits in homogeneous spaces
{a} General method

Before treating the maximal subgroups of C(3,1) in
particular, we shall formulate the general problem of
determining conjugacy classes for subgroups of a given
group G, Let K and H be two subgroups of G and let

(], ={g"'Hg, g= G} (11.1)

denote the set of subgroups of G conjugate to H. We
should like to divide [H]; into conjugacy classes under
K’

lg-Hg) x={k'g"tHgk, ke K} (11.2)
If we define the action of K in [H]; by
k:g-lHg v~ klgHgh, (11.3)

then each class [ g-!Hgly is a K-orbit, and [H]; is the
(disjoint) union of all the orbits. Let Ng(H) denote the
normalizer of H in G. The mapping ¢ : [H]; — Ne(H)\G

d:g- Hg = N,(H) g (11.4)

is bijective and, under this mapping, the natural action
¥ of G on [Hlg,

bigHg g -'g-'Hgg, 2cG, (11.5)
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and ©; on Ny (H)\G,

O; :N;(H)g = Ng(H)gg, g€G (11.6)

are equivariant.

Through the mapping ¢, the problem of determining
the classes [ g-!Hg], becomes equivalent to that of
identifying the double cosets N;(H)gK. The latter can
be seen e¢ither as the set of K-orbits in No(H)\G o7 as
Ng(H) orbits in G/K, and this dual interpretation gives
two equivalent methods of solution. Of course, the right
and left cosets are interchangeable; however, the
nature of the orbits under K and H in the respective
homogeneous spaces N; (H)\G and G/K may be entire-
ly different, the one being more readily identifiable
than the other. We should like furthermore to remark
that if in the above, the group G is a Lie group and #/
is the Lie algebra for some subgroup H, the entire
analysis carries through mutatis mutandis if we make
the replacements H —//, N (H) —~ Ng(#4).

For the reasons outlined in the Introduction, we
should now like to characterize the maximal subgroups
of the conformal group by their conjugacy classes
under the Poincaré group P(3,1); that is, for our case,
G=0(4,2), K=P(3,1) and H is any normally maximal
subgroup of C(3,1). [The central elements of O(4, 2)
do not, of course, affect the classification, ]| We thus
have

NG(H):‘—NG(/‘/)

and the particular choice of H for a given // is imma-
terial since the conjugacy classes [#]p3,1) and [H]pes, 1)
will be isomorphic under the correspondence

(11.7)

g Hg—g ' H'g— g~ Hg

for any two normally maximal groups H, H’ with the
same algebra /.

The two methods provided by the two interpretations
of the double cosets are both worthwhile considering,
since the first [P(3, 1) orbits in O(4, 2)/Ng(H)] is direct-
ly related to the contents of the preceding section (i.e.,
identification of maximal subalgebras) while the second
[Ng(H) orbits in O(4, 2)/P(3, 1)~ C%] is directly related
to the contents of Sec. V. The computations are
straightforward, and the results are summarized in
Table I. Readers mainly interested in the applications
to invariant fields are invited to omit the details below.

(b} P(3,1) orbits in O(4,2)/Ng (H}

For each reducible maximal subalgebra /#/, we have
seen in Sec. IV 10 that the space O(4, 2)/Ng(H)~ [#]c
can be realized as the set of all vector subspaces V of
IR® which are related by O(4, 2) to a given /4/-invariant
subspace, Then each P(3, 1)-orbit consists of an
equivalence class of vector spaces [V]p(3'1) related
by P(3,1) transformations,

Ve, ={pV,p< PG, 1)}

which, in turn, corresponds to a conjugacy class
[#1pes,1y of algebras leaving the spaces in [Vlp(s,y, in-
variant., For subalgebras which are reducible within
the su(2, 2) realization on €%, precisely the same

(11. 8)
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method may be applied with regard to the corresponding
invariant subspaces VC@*. The procedure for identify-
ing the classes [Vlp,1, is as follows:

(¢} Choose a particular space V of given signature
which is invariant under the algebra // and identify it
by the O(4, 2) {or SU(2, 2}] signature.

(8) Identify a basis for V in terms of IR® (or €*) co-
ordinates and apply the most general P(3, 1) transfor-
mation to it, as given by Egs. (7.4) [or (8.25), (8.28)].

(¥) By suitable choice of the (3, 1) transformation,
reduce the basis elements to a set of standard forms
which may no longer be related to each other by a
P(3,1) transformation.

(6) Identify for each orbit a representative set of basis
elements; one for each standard form.

(¢) Identify a set of elements ge O(4, 2), one for each
standard basis, which maps the basis for V in its
standard form onto the other standard bases represent-
ing different conjugacy classes.

We now treat the maximal algebras of ¢(3, 1) by this
procedure. In each case, rather than referring to the
algebras, we shall identify the normally maximal group
H, defined as the largest subgroup (mod Z,) of O(4, 2)
[or 8U(2, 2)] to leave invariant the same space V which
is invariant under its Lie algebra //. For the cases
(i)— (vi) the group H equals its normalizer (mod Z,).
For case (vii), there are two elements in N(#)/H and
this will be discussed separately.

(i) The group O4,1): This group is identified by an
invariant subspace of signature [100], i.e. , itis
spanned by one positive vector T< IR®, which we nor-
malize to length @(T)=1. Applying translations, we
can immediately reduce T to the form T(})
=(0,0, 0,0, sinh?, coshA) if T+ 7% %0, If 7%+ 7% =0,
then by translation and homogeneous Lorentz trans-
formations we reduce T to TV’ =(1, 0,0, 0, 0, 0). Thus,
we obtain two types of P(3, 1) orbits of [100] signature
spaces: a one parameter family, represented by the
spaces with basis elements exp(A\D) T¥, with T®
=(0,0,0,0,0,1), and an isolated one, represented by
the basis element T'?’, Taking the latter as the standard
basis for the defining representation of O(4,1), an
0(4, 2) element which maps this onto the corresponding
basis in the second family with parameter 2, is g{(})
=exp[AD] exp[n/4(Py +Cy)]. A basis for the o(4, 1)
algebras leaving T and exp(AD) T'? invariant is given
by

{D, L;,P;,C,;} and {L,—, K;, exp()P, — exp(-N)C,},

respectively.

(ii) The group O(3,2): This corresponds to an in-
variant subspace of signature [010], spanned by one
negative length vector 8, which analogously to the
above, may be reduced by P(3,1) transformations to
one of the two forms 8 =(0, 0, 0, 1, 0, 0) or exp(AD) 8,
where 89 = (0, 0,0,0,1,0). The corresponding Lie
algebras and the transition elements in O(4, 2) leading
from one conjugacy class to the others are given in
Table I (as they are for all the cases below).
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{iii} The gvoup SIM(3, 1): The invariant subspace is of
signature [001] and is spanned by an isotropic vector
Lc IR [i.e., satisfying Q(L)=0]. Applying P(3,1)
transformations this may be reduced to the form L'
=(0,0,0,0,1,1) if L* + L* # 0 or to one of the forms
L% =(1,0,0,-1,0,0) or L =(0,0,0,0,1, - 1) if
L+ L5 =0,

(iv) The group OPT(3,1): The invariant subspace is
of signature [002], i.e., it is spanned by two ortho-
gonal vectors X and Y [ g(X, X) =¢(Y, Y) =¢g(X, X)=0].
Vector X can be transformed to one of the three
standard forms LV, L®, L® obtained above in the
SIM(3, 1) case and vector Y may then be standardized
by transformations in the subgroups of P(3, 1) which
leave invariant the space spanned by X. Doing this, and
taking suitable linear combinations among the pairs of
basis vectors to simplify their form, we obtain two
orbits of spaces, inequivalent under P(3,1), repre-
sented by the following pair of standardized basis
vectors:

L, LY ={1,0,0,-1,0,0,), (0,0,0,0,—1,1)}
and

{L,L}* ={{,0,0,-1,0,0,), (0,0,0,0,1,1,)}

{(v) The groups O(4)x0O(2) and O(2,2)X0(2): These
two cases, corresponding, respectively to invariant
subspaces of signature [200] and [020] are treated
analogously to the above; that is, one of the basis
vectors is put in a previously established standard form
of type 8 or type T, and the other is standardized us-
ing the siabilizer of the corresponding one-dimensional
space in P(3,1). The results are summarized in
Table I.

(vi) The group O(3)x0(2, 1): The signature of the in-
variant subspace is [030], i.e., it is spanned by three
orthogonal negative length vectors 8, 8*) and 89,
Two of them may be put into one of the two standard
forms identifiable from Table 1 for the group O(2, 2)

X O(2). Considering each separately, let us first choose
8, 8%} ={(0,1,0,0,0,0), (0,0,1,0,0,0} Then 8%
=(s0,0,8%,5', 5%, with S} -S}-S2+St=-1, If
S§'+8%+0, we can translate S into

(0,0, 0, 0, cosh), sinhx) without altering {8V, 8%}, If
§'+5°=0, we can transform $® by a homogeneous
Lorentz transformation and a translation into
(0,0,0,1,0, 0) without affecting {8V, 8‘?}. Now, take
the other case {8',8%}={(0,0,0, 1,0, 0),

(0,0,0,0, coshX, sinhA)}. Then 8% =(s°, S!, $%, 0, S* sinh,
S$* coshA). By an O(2, 1) transformation 8 can be taken
into (0, 0, coshp, 0, sinhyt sinh), sinhit cosht), The triplet
{8 8@ 89N now determines a hyperplane in the 2345
subspace. A vector orthogonal to this hyperplane within
the 2345 subspace determines the hyperplane completely
and can be written as T, =(0,0,sinhy, 0,coshu sinha,
coshp cosh}). By a translation {a, 1) with

a=(0, - tanhy exp(~ ), 0, 0) we can take T, into

(0, 0,0, 0, sinhA, coshA), The orthogonal hyperplane

then goes into {81,8%,8%}={(0, 0, 1, 0,0, 0),

(0,0,0,0, cosh, sinh)), (0,0,0,1,0,0)}. Thus the
classes for this case are characterized by this one
parameter family of orbits together with the single
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orbit represented by the standardized set of basis ele-
ments {(0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0)}

(vii) The group O(2,1)x0(2,1): For this single case,
the normalizer N(/{) is not equal to the group H and
hence, according the discussion of Sec. IV 10, the
mapping (10, 3) does not define a one—one corre-
spondence between the set of equivalence classes
{lV]p(s, 0} of vector spaces invariant under the algebra
0(2,1)@0(2,1)=/ and the set of conjugacy classes
{{A#)p, 1} However, N(//)/H has only two elements
and hence there will be at most two classes [V]p(gli)
corresponding to the same class [/]pe, 1) .

To see this, we note first that the O(4, 2) conjugacy
class of groups 0(2, 1)x0(2, 1) {and their Lie algebras)
is defined by the O(4,2) class of subspaces V< IR® with
signature [120]. We may take, as the defining represen-
tation, the group (or algebra) leaving invariant the sub-
space V; spanned by the vectors {(0,1,0,0,0,0,),
(0,0,1,0,0,0), (1,0,0,0,0,0)}. Then the normalizer
of the group H (or algebra //) leaving this space in-
variant is

N(H)=HX Zj,
where Zj=1{1, 1’} with

000001
000010
- looo1o00
001000] "
010000
100000

The transformation 1’ takes the space Vy into its
orthogonal complement Vi and consequently two equiva-
lence classes [Vi]pa,1), and [Vi]p,1y correspond to the
same conjugacy class [#]p, 1y. In general, any other
subspace V; of signature [120] will be mapped either
into itself or its orthogonal compliment V; by elements
of the normalizer of the group leaving V; invariant, and
hence will correspond to the same conjugacy class of
groups (or algebras). Turning to the detailed classifica-
tion of these, the [020] subspace of any such space can
be chosen in one of the forms given in Table I for the
invariant spaces under O(2,2)X0(2). Consider first the
case when {8?,8%}=1{(0,1,0,0,0,0), (0,0,1,0,0,0)}
Then the third basis vector, orthogonal to these first
two, has the form T=(T%0,0, T3 7% 7%) with normali-
zation T3~ T3 - T3+ Ti=1. If "+ T° =0, we can trans-
form the basis, using translations and homogeneous
Lorentz transformation which leave 8” and 8%’ fixed
to precisely the form given above defining the space

Vy. If 7'+ 7°+#0, we can apply a translation to trans-
form the basis to the form {80, 8%, T}={(0, 1, 0, 0, 0, 0),
(0,0,1,0,0,0), (0,0,0,0, sinh?, cosh\)} defining a one-
parameter family of spaces Vy(\). Consider now the
other possibility; namely, {8'1?,8%}={(0,0,0,1,0,0),
(0,0, 0,0, coshr, sinhA)}. We then have T

=(1T°, T, T%,0, T* sinhX, T* cosh)), with T}~ T} - T}
=1-T%=K. If K<0 or K> 0, we can transform the
basis, in a manner analogous to case (vi) into one of
the standard bases defining V;, V;(A) or their ortho-
gonal complements Vi, Vi(\). If K=0 with 7°=7"
=7%=0, we already have the space Vi. However, the
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case K=0, T°#0 is different. We then have, after a
suitable rotation T =(T°, - T, 0, 0, sinh, cosht). Apply-
ing a translation with a= (ao, a1, 0, 0) we obtain: s
=(0,0,0,1,0,0), S? =(a'", a'e*, 0,0, cosh)

+[(a? - a})/2]¢*, sinhX - [(a} - a/2]¢), and T

= (T +a%*, - T"+a'e*, 0, 0, (ay + )Ty + sinhx

+ad - /2] e . - (@ +a') Ty + coshh ~ [(d] - d})/2] €*).

We now replace S’ and T by T = coshdT + sinhbS®

and S =sinhp T + coshbS®. Choosing e =¢™*/V2,
T°=¢e/2, a° =t =¢72/2, a°+a' =1, we obtain a space
spanned by {(1,0,0,0,0,1), (0,1,0,0,1,0}, (0,0,0,1,
0,0)}. (Note that 7° may be chosen to have any nonzero
value by applying a Lorentz boost in the 1- direction

to the original expression for T.). To identify the
conjugacy class, we apply another rotation in the 1-3
plane to yield a space V, spanned by basis vectors
{(1,0,0,0,0,1), (0,1,0,0,0,0), (0,0,0,1,1,0)}. We note
that, unlike the space V, and V{(a}, the space V; may
be mapped into its orthogonal complement V3 by an
element of the (general) Poincaré group, consisting

of a product of spatial rotations and a time inversion.
Hence, we have five types of equivalence classes of
vector spaces; [V loa.irs [Vilo @y [VaMp 310

(Vi) s 30)s [Vslp a1y, but only three conjugacy
classes of groups (or algebras) leaving invariant
spaces in the V, (and V%), V, (and V}), and V,~V;
classes.

{viii) The group S[U(2,1)xU(1)]: As discussed in
Sec. IV 10, there is only one C(3,1) [or C,(3,1)] con-
jugacy class of subalgebras of SU(2,2) leaving, within
the defining representation on €*, a one-complex dimen-
sional, nonisotropic subspace invariant, whereas under
SU(2,2), C,(3,1), or C'(3, 1), the conjugacy classes
split into two, characterized by SU(2, 2) signature [100]
and [010], Similarly there is just one conjugacy class
of this algebra under the general Poincaré group P(3,1),
but two, characterized by the signature, under the
restricted [P}(3, 1)] or orthochronous [P'(3, 1)] Poincaré
groups. To see this, we may proceed as follows. Work-
ing in the basis with off-diagonal form % [Eqgs. (8.25)—
(8.29)] we may transform an arbitrary, nonisotropic
vector in € into one of the forms: (0, (e+14)¢,0,¢q) or
0, (a—-1i)q,0,q), with g= €, a= IR, through a suitably
chosen homogeneous Lorentz transformation. Next, by
multiplication with a normalization factor and applica-
tion of a translation in the (0, 3) plane, we may trans-
form this to the form (0,4,0,1) or (0,1,0,7) depending
upon whether the signature is + or — ., No further trans-
formation in the identity component of P(3,1) can relate
the two spaces which these vectors span. However the
transformation J (i.e., PT) [Sec. III8, Eq. (8.39)],
which in the off-diagonal basis takes the form

= -il O
7=[7" 4.

maps these two spaces into each other, Thus, we have
either one or two conjugacy classes of the group
S(U(2, 1)xU(1)) under the groups P(3,1) [P.(3,1)] and
Pi(3,1) [or P'(3,1)], respectively. Within the diagonal
representation with Hermitian form % [Eq. (8.4)], the
bases for the two subspaces of positive and negative
signature have the form (0, 1, 0, 0) and (0, 0,0, 1),
respectively.

(11.9)
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(c) Ng (H)-Orbits in 0(4,2)/P(3,1)

The homogeneous space O(4,2)/P(3, 1) has been iden-
tified in Sec. III 7 with the five-dimensional cone C® in
IR® defined by Eq. (7. 1), with the identity coset identi-
fied with the point (0,0, 0,0, - 1,1). The conjugacy
classes therefore, under P(3, 1), for any subalgebra
g~'Hg of 0(4,2), (or subgroup g 'Hg) are identified with
the orbits in C® under the group Ng(#) [or N;(H)], the
orbit of the identity coset being identified with the class
of /# (or H) itself. Since the action of any subgroup of
0O(4, 2) on C® is just given by the linear transformation
on IR%, these orbits are easily identified. We therefore
simply list below the equations defining the different
types of orbits on C® corresponding to each maximal
subalgebra, together with a geometric characterization
of the type of space they describe. In order to recover
a representative of the class to which these orbits cor-
respond, we merely conjugate the original algebra //,
which is on the identity orbit, with any group element
g O(4, 2) which maps the point (0,0,0,0, -1, 1) into
the orbit considered. But such a group element is given
precisely by the (inverse of the) mapping which takes
the representative V left invariant under /7, into another
v/, invariant under the conjugate algebra /' =g "4g.
This allows a direct translation of the results as ob-
tained in the present section into those obtained in the
previous one. Since these are essentially identical, we
only treat three representative examples below in order
to illustrate the method.

(i) The group O(4,1): Taking, as the original defini-
tion of H, the subgroup of O(4, 2) leaving invariant the
space spanned by (1,0,0,0,0,0), we obtain the following
two types of orbits on C®:

(@) md+ni+nd+ni-ni=0, ,
11.10
(8) nt 4+ = = )

The first, defining a four-dimensional cone C%, is the
orbit of the identity, while the second, corresponding to
a one-parameter family of single-sheeted hyperboloids
H*(\) is obtained from the identity by applying the
mapping exp[-(/4)(P, + C,)] exp(~ AD).

(ii) The gvoup SIM(3,1): We define H as the subgroup
leaving invariant the space of null vectors
(0,0,0,0, — x,x). This gives three orbits in C%:

(ll) Tlu=0, 774+775=0,
(@) n*+n°#0,
@) nun* =0, nt+n*=0, n'=0.

(11.11)

The identity orbit (o) defines a line L!. Orbit (8) de-
fines a five-dimensional subspace of C°, which geome-
trically may be identified as a product of a four-
dimensional paraboloid P* with a line Z’ minus a point.
A group element mapping the identity coset into this
orbit is given by exp[— (7/2)(P; — C5)]. The third orbit
() defines the product C*X L! of a cone with a line and
may be related to the identity by the mapping

expl— (7/4)(P; - C;)] exp[~ (n/4)(Py+C,)]. The orbits
for the remaining cases of reducible subgroups of
O(4, 2} are equally simple to identify, and the corre-
sponding results are listed in Table I,
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(iii) The group H=5(U(2,1)xU(1)): This case is a little more involved, because the subgroup is simply defined
only within the SU(2, 2) realization. Therefore, to determine its action on Cs, we must make use of the homo-
morphism ¢ given by Eq. (8.22). We first identify three subgroups of S(U(2, 1)xXU(1)) that are useful for the orbital
analysis. Working in the basis with diagonal form #, let G, be the isotropy subgroup of the origin in M~ U(2). Using
the realization of Sec. III 8, Egs. (8.31) or (8. 35) for the action on this space, we find G, to consist of all elements
8o of the form

go=Up g1, (11.12)
where
exp(-ip)
. £ exp(ip)
“ exp(— i) (11.13)
+ explip)
and
212 . . lz1?
coshi — exp{(r) 5 - iQ -1z Q+i sinhx - exp(n) 5 0
—-iexp()z 1 exp(2) z 0
1= | =mrmmmmem e e e e e e e e e e m e m e — e ) (11- 14)
L |z 12 21 .
Q—1i sinh:+ exp(y) 5 z coshX + exp(®) 5 tiQ 0
L 0 0 0 1

O0<p<2m, A QcIR, z=x+iyeC.
Now, we identify the maximal compact subgroup K =8(U(2)xU(1)XU(1)) whose elements we parametrize in the form
ko =Toug, (11, 15)
where

exp(~it/2) v . 0

L e , 0st<7, veSUQ). (11, 16)
0 v expli£/2)

Finally, let Uj be the U(1)X 2, subgroup consisting of elements of the form u, and note that this is precisely the

intersection of K with G;. The set K of elements of the form % is not a group (due to the limits on the range of the
angle t), however, it may be seen as locally isomorphic to the group U{2) under the mapping

k ~— exp(~ i) ve U(2). (11.17)

This group U(2) acts on the space /7 transitively and freely [Eq. (8.35), Sec. III 8], It therefore follows that each
element ge S(U(2, 1) X U(1)) may be decomposed uniquely into a product

g=Fuygy, kcK, uyc Uy, gicGy, (11.18)

_’-‘;:

where G; is the noncompact group consisting of elements of the form (11. 14). Thus the orbit in M under S(U(2,1)
XU(1)) covers the entire space and the space K may be identified with the coset S(U(2, 1)XU(1))/G,. To determine
the orbits in C°, we make use of the homomorphism ¢ given by Eq. (8.22). Parametrizing the SU(2) element v as

atib c+id 212 2R
_ = 11,19
v [—c+id a—ib]’ a*+b +ct+ad=1, ( )
we obtain
~cost 0 O 0 O -sing
0 a b -cd 0
- 0 -b a d c 0 (11.20)
$W=1 6 ¢ —da b 0 ’
0 —-d —-c¢c =-b a 0
Lsing 0 0 0 0 cost
1 o 0 000
0 cosp —sing 0 0 O
] 0 sing cos¢p 0 O 0 (11.21)
vd=15"9 o 100 |’
0 O 0 010
[0 o 0 001
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g 212 Fik 1
coshX + exp(}) 5~y % sinhA + exp(?) 5 Q -Q
y exp(\) 1 0 y exp(\) - xexp()) x exp(A)
- x exp(?) 0 1 - x exp(A) y exp(A) -y exp(N)
: |z 12
o(g) = sinhX — exp(\) l_z_zl_ y x coshx—exp(d) —%— s) Q
2 I |2
Q X -y (cosh)\ — exp(\) [izl—— ) - <sinh7x - exp(\) —ZT
. Iz 12 . Iz 1%
Q x =y - ( sinhX + exp(A) T) sinhX + exp(}) 5 ]
(11.22)

Applying ¢(g,) to the point (0,0, 0,0, ~1,1), we obtain (0,0, 0, 0, — exp(r), exp(r)). Next applying the transformations

o(E) e K, we obtain all points @° n', 7%, 7%, 7*,7°) with
7 +nE =exp(2N), 1 +n+nd+ 0} =exp(2N)

(11.23)

(that is, submanifolds diffeomorphic to S1x &%), Since A may take any value, this covers the entire cone C®. There-
fore, there is only one conjugacy class of S(U(2,1)xU(1)) € SU(2, 2) under the group P(3, 1).

V. INVARIANT FIELDS
12. Local invariance and Lie derivatives

Although the invariant fields to be discussed in Sec.
V 13 have been obtained by use of the global method out-
lined in Sec. II, we give here the differential equations
[cf. Eq. {4.6)] describing local invariance of fields
under infinitesimal conformal transformations. Using
the notations of Sec. III 6 Egs. (6.3), (6.4) to express
the most general field X generating local conformal
transformations the condition, in Cartesian coordi-
nates, for invariance of a (symmetric or antisymmetric)
tensor of type (0, 2) with components F,, is

(g w35 +a% 3o ) F oy + (0 F o + 0§ Fuug)
— M2 +x%0y) Foy — (x%¢% 04 — 2¢%%4[2 + xP05) F,,,
-2(c%x, ~c,x*) Fo,~2(c%x, -, x*) F, ,=0.
(12.1)

For a covariant vector {1-form) with components 4,,
the con